www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konvergenzen von Folgen von ZV
Konvergenzen von Folgen von ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzen von Folgen von ZV: Idee
Status: (Frage) überfällig Status 
Datum: 08:08 Di 21.06.2011
Autor: fagottator

Aufgabe
Betrachten Sie den Wahrscheinlichkeitsraum $([0,1], [mm] \mathcal [/mm] B [0,1], [mm] \mathbb [/mm] P)$ mit der Gleichverteilung [mm] $\mathbb [/mm] P$ auf $[0,1]$, sowie reelwertige Zufallsvariablen auf diesem Raum. Untersuchen Sie die folgenden Folgen auf die Konvergenzarten stochastische-, fast sichere- und [mm] $L^{1}$-Konvergenz. [/mm] Im Falle der Konvergenz geben Sie den Grenzwert an.

a) [mm] $X_n(t) [/mm] = [mm] t^n$ [/mm]
b) [mm] $X_{2^l+k}(t) [/mm] = $ 1 [mm] $_{[k2^{-l},(k+1)2^{-l}]}(t)$, [/mm] mit $l [mm] \in \IN$, [/mm] $0 [mm] \le [/mm] k [mm] \le 2^l$, [/mm] 1 die Indikatorfunktion
c) [mm] $X_n(t) [/mm] = [mm] (2^n [/mm] - [mm] t2^{2n})_{+}$, [/mm] wobei [mm] $(a)_{+} [/mm] := max(a,0)$

Hallo zusammen,

ich habe das mit den Konvergenzen leider noch nicht ganz verstanden. Es wäre superlieb, wenn mir jemand (zumindest beim Anfang) helfen könnte.

LG fagottator

        
Bezug
Konvergenzen von Folgen von ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 21.06.2011
Autor: blascowitz

Hallo,

zu a)

Berechne mal

[mm] $E(X_{n})$, [/mm] das ist das gleiche wie [mm] $E(|X_{n}|)$ [/mm] (wieso?)

Was passiert mit diesem Erwartungswert für $n [mm] \rightarrow \infty [/mm] $. Was bedeutet das?

Wenn du diese Fragen beantwortet hast, hast du gleich zwei Konvergenzarten abgearbeitet(Stichwort Tschebyscheff-Ungleichung)

Viele Grüße
Blascowitz






Bezug
        
Bezug
Konvergenzen von Folgen von ZV: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Fr 24.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]