www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 22.09.2010
Autor: EdwinMoses

Aufgabe
Bestimmen Sie die Konvergenzradien nachstehender Potenzreihen und damit die offenen Intervalle (a,b) in denen die Reihen konvergieren.

a) s(x) = [mm] \summe_{i=1}^{\infty} (-1)^{i+1} \bruch{(x-1)^{i}}{i} [/mm]

Hallo,

Hier erstmal die Lösung:
R = [mm] \limes_{i\rightarrow\infty} |\bruch{\bruch{1}{i}}{\bruch{1}{i+1}}| [/mm] = [mm] \limes_{i\rightarrow\infty} \bruch{i+1}{i} [/mm] = 1

Das offene Intervall, in dem die Reihe sicher konvergiert lautet [mm] (x_{0} [/mm] - R, [mm] x_{0} [/mm] + R) = (0,2)

Meine Frage ist wie ich die gegebene Potenzreihe auf die Form in der Lösung umwandel. Die Formel für das Quotientenkriterium ist mir bekannt:
R= [mm] \limes_{i\rightarrow\infty} |\bruch{a_{i}}{a_{i}+1}| [/mm]
Dennoch weiß ich nicht wie ich es korrekt auf diese Form bringe und was in der Beispielaufgabe z.B [mm] a_{i} [/mm] sein soll. Ich bitte um eure Hilfe!

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 22.09.2010
Autor: fencheltee


> Bestimmen Sie die Konvergenzradien nachstehender
> Potenzreihen und damit die offenen Intervalle (a,b) in
> denen die Reihen konvergieren.
>  
> a) s(x) = [mm]\summe_{i=1}^{\infty} (-1)^{i+1} \bruch{(x-1)^{i}}{i}[/mm]
>  
> Hallo,
>  
> Hier erstmal die Lösung:
>   R = [mm]\limes_{i\rightarrow\infty} |\bruch{\bruch{1}{i}}{\bruch{1}{i+1}}|[/mm]
> = [mm]\limes_{i\rightarrow\infty} \bruch{i+1}{i}[/mm] = 1
>  
> Das offene Intervall, in dem die Reihe sicher konvergiert
> lautet [mm](x_{0}[/mm] - R, [mm]x_{0}[/mm] + R) = (0,2)
>  
> Meine Frage ist wie ich die gegebene Potenzreihe auf die
> Form in der Lösung umwandel. Die Formel für das
> Quotientenkriterium ist mir bekannt:
> R= [mm]\limes_{i\rightarrow\infty} |\bruch{a_{i}}{a_{i}+1}|[/mm]

potenzreihen schreibt man ja allgemein so:
[mm] \sum_{n=0}^\infty a_n(x-x_0)^n [/mm]
dann gilt für den konvergenzradius
[mm] R=\limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}| [/mm]

nicht zu verwechseln beim quotientenkriterium
[mm] \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| [/mm]
wo meistens das [mm] a_n [/mm] als folge einer summe gemeint ist, und nicht bloss dem koeffizient vor dem entwicklungspunkt
[mm] \sum_{n=0}^\infty a_n [/mm]

>  
> Dennoch weiß ich nicht wie ich es korrekt auf diese Form
> bringe und was in der Beispielaufgabe z.B [mm]a_{i}[/mm] sein soll.
> Ich bitte um eure Hilfe!

gruß tee

Bezug
                
Bezug
Konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Mi 22.09.2010
Autor: EdwinMoses

ich hab meinen fehler mittlerweile auch bemerkt. Ich habe das Quotienkriterium falsch gelesen und die +1 im Nenner nicht zum index dazugezählt sondern zum a. Jetzt ergibt die Aufgabe Sinn :) Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]