www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius
Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 04.10.2011
Autor: racy90

Hallo

Ich hab die Reihe [mm] \summe_{n=1}^{\infty} \bruch{x^n}{n} [/mm] mit dem Quotientenkriterium untersucht ob sie für |x| <1 konvergiert.Als Grenzwert bekomme ich dann x also nehme ich an sie konvergiert.

In meinen Skript steht nun der Konvergenzradius r= [mm] \bruch{1}{lim (an+1)/an} [/mm] wenn der lim vom Quotientenkriterium reell und positiv ist.

Stimmt das?

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Di 04.10.2011
Autor: schachuzipus

Hallo racy90,


> Hallo
>  
> Ich hab die Reihe [mm]\summe_{n=1}^{\infty} \bruch{x^n}{n}[/mm] mit
> dem Quotientenkriterium untersucht ob sie für |x| <1
> konvergiert.Als Grenzwert bekomme ich dann x

Hmm, ich komme mit dem QK auf [mm]\lim\limits_{n\to\infty}\left|\frac{\frac{x^{n+1}}{n+1}}{\frac{x^n}{n}}\right|=|x|\cdot{}\lim\limits_{n\to\infty}\frac{n}{n+1}=|x|[/mm]

Und gem. QK hat man Konvergenz für [mm]|x|<1[/mm]

> also nehme ich
> an sie konvergiert.
>  
> In meinen Skript steht nun der Konvergenzradius r=
> [mm]\bruch{1}{lim (an+1)/an}[/mm] wenn der lim vom
> Quotientenkriterium reell und positiv ist.
>  
> Stimmt das?

Nun, du hast ja eine Potenzreihe [mm]\sum\limits_{n=n_0}^{\infty}a_n\cdot{}(x-x_0)^n[/mm] gegeben (hier mit [mm]x_0=0[/mm] und [mm]a_n=\frac{1}{n}[/mm]), da gibt es eigens Konvergenzkriterien, etwa Cauchy-Hadamard in Anlehnung an das Wurzelkriterium oder eben deine Formel, die du ja auch schreiben kannst als

[mm]\rho=\lim\limits_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|[/mm]

Die ist aber nur definiert, wenn der Nenner da nicht 0 ist ...

Üblicherweise nimmt man Cauchy-Hadamard her und berechnet [mm]\rho=\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}}[/mm], wobei man [mm]\frac{1}{\infty}:=0[/mm] und [mm]\frac{1}{0}:=\infty[/mm] setzt.

In beiden Fällen hast du Konvergenz für [mm]|x-x_0|<\rho[/mm] und Divergenz für [mm]|x-x_0|>\rho[/mm]

Wie es am "Rand" [mm]|x-x_0|=\rho[/mm] aussieht, ist noch zu untersuchen ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]