Koordinatengleichung Kugel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe 1 | Die Kugel K hat den Mittelpunkt M [mm] (3|m_{2}|m_{3}) [/mm] mit [mm] m_{2} [/mm] < 0 und [mm] m_{3} [/mm] > 0; sie berührt die [mm] x_{1}-x_{2}-Ebene, [/mm] die [mm] x_{2}-x_{3}-Ebene [/mm] und die [mm] x_{3}-x_{1}-Ebene. [/mm] Geben Sie eine Gleichung von K an und finden Sie heraus, welche Entfernung der Punkt M vom Ursprung O (0|0|0) besitzt. |
Aufgabe 2 | Die Gleichung [mm] x_{1}^{2} [/mm] + [mm] x_{2}^{2}+x_{3}^{2}+4x_{1}-4x_{2}-2x_{3}-27 [/mm] = 0 beschreibt eine Kugel K. Finden Sie den Kugelpunkt S heraus, der vom Ursprung am weitesten entfernt ist. |
Aufgabe 3 | K: [mm] x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-8x_{1}+2x_{2}-4x_{3}+5=0 [/mm] Begründen Sie, dass die Kugel K die [mm] x_{2}-x_{3}-Ebene [/mm] berührt, und geben Sie die Koordinaten des Berührpunkts B an. |
Aufgabe 4 | [mm] K_{2}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4x_{1}-6x_{2}+9=0 [/mm] Ermitteln Sie die Koordinaten aller Punkte P(2|p|0), die auf [mm] K_{2} [/mm] liegen. |
Wie rechne ich diese Aufgaben? Wie kann ich beispielweise mit der Gleichung [mm] (x_{1} [/mm] - [mm] m_{1})^{2} [/mm] + [mm] (x_{2} [/mm] - [mm] m_{2})^{2} [/mm] + [mm] (x_{3} [/mm] - [mm] m_{3})^{2} [/mm] = [mm] r^{2} [/mm] die Koordinaten eines Punktes auf der Kugel ausrechnen, wenn die Koordinaten von M und der Wert von r gegeben sind? Bloßes Einsetzen? Ich komme leider auf kein Lösung und bei den anderen Aufgaben leider auch nicht.
Ich hoffe mir kann jemand sehr schnell helfen, denn ich schreibe morgen Klausur! :)
Danke schonmal im Voraus für euer Bemühen.
Liebe Grüße
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:22 Mi 09.05.2012 | Autor: | fred97 |
> Die Kugel K hat den Mittelpunkt M [mm](3|m_{2}|m_{3})[/mm] mit [mm]m_{2}[/mm]
> < 0 und [mm]m_{3}[/mm] > 0; sie berührt die [mm]x_{1}-x_{2}-Ebene,[/mm] die
> [mm]x_{2}-x_{3}-Ebene[/mm] und die [mm]x_{3}-x_{1}-Ebene.[/mm] Geben Sie eine
> Gleichung von K an und finden Sie heraus, welche Entfernung
> der Punkt M vom Ursprung O (0|0|0) besitzt.
> Die Gleichung [mm]x_{1}^{2}[/mm] +
> [mm]x_{2}^{2}+x_{3}^{2}+4x_{1}-4x_{2}-2x_{3}-27[/mm] = 0 beschreibt
> eine Kugel K. Finden Sie den Kugelpunkt S heraus, der vom
> Ursprung am weitesten entfernt ist.
> K: [mm]x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-8x_{1}+2x_{2}-4x_{3}+5=0[/mm]
> Begründen Sie, dass die Kugel K die [mm]x_{2}-x_{3}-Ebene[/mm]
> berührt, und geben Sie die Koordinaten des Berührpunkts B
> an.
> [mm]K_{2}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4x_{1}-6x_{2}+9=0[/mm]
> Ermitteln Sie die Koordinaten aller Punkte P(2|p|0), die
> auf [mm]K_{2}[/mm] liegen.
> Wie rechne ich diese Aufgaben? Wie kann ich beispielweise
> mit der Gleichung [mm](x_{1}[/mm] - [mm]m_{1})^{2}[/mm] + [mm](x_{2}[/mm] - [mm]m_{2})^{2}[/mm]
> + [mm](x_{3}[/mm] - [mm]m_{3})^{2}[/mm] = [mm]r^{2}[/mm] die Koordinaten eines Punktes
> auf der Kugel ausrechnen, wenn die Koordinaten von M und
> der Wert von r gegeben sind? Bloßes Einsetzen? Ich komme
> leider auf kein Lösung und bei den anderen Aufgaben leider
> auch nicht.
>
> Ich hoffe mir kann jemand sehr schnell helfen, denn ich
> schreibe morgen Klausur! :)
>
> Danke schonmal im Voraus für euer Bemühen.
Versuchs mal mit einem Bild. Dann solltest Du sehen, dass für den radius r folgendes herauskommt:
Berühren der [mm] x_1-x_2- [/mm] Ebene liefert: [mm] r=m_3
[/mm]
Berühren der [mm] x_2-x_3- [/mm] Ebene liefert: r=3
Berühren der [mm] x_3-x_1- [/mm] Ebene liefert: [mm] r=-m_2.
[/mm]
FRED
>
> Liebe Grüße
>
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt)
|
|
|
|
|
Das versteh ich leider nicht ganz. Wieso weiß man, dass r = [mm] m_{3} [/mm] sein muss? Könnten Sie das bitte noch einmal genauer erklären?
|
|
|
|
|
Hallo pinkpanther!
Das meinte Fred auch mit "Skizze machen" (meinetwegen 2-dimensional mit einem Kreis).
Wenn der Kreis bzw. die Kugel eine Gerade / Ebene gerade berühren soll, muss der Abstand des Mittelpunktes exakt dem Radius entsprechen.
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Mi 09.05.2012 | Autor: | fred97 |
Machen wirs rechnerisch:
Die Kugel(oberfläche) hat die Gleichung:
[mm] (x_1-3)^2+(x_2-m_2)^2+(x_3-m_3)^2=r^2
[/mm]
Berühren der [mm] x_1-x_2-Ebene [/mm] bedeutet: der Punkt [mm] (3|m_2|0) [/mm] liegt auf der Kugel.
Wenn Du diesen Punkt in obige Gleichung einsetzt, bekommst Du:
[mm] m_3^2=r^2.
[/mm]
Wegen [mm] m_3>0 [/mm] folgt: [mm] m_2=r.
[/mm]
FRED
|
|
|
|
|
Ah vielen Dank! Jetzt habe ich diesen Teil verstanden. Doch eine Frage habe ich noch: Wie komme ich auf die Koordinaten eines Punktes auf einer Kugel, wenn ich von diesem nur weiß, dass es der Berührpunkt der Kugel mit der [mm] x_{2}-x_{3}-Ebene [/mm] ist? (siehe Aufgabe 3)
|
|
|
|
|
Hallo!
Das hat Fred doch gerade erklärt.
Bringe dafür die gegebene Kugelgleichung aus Aufgabe 3 in die Form [mm] $\left(x-x_M\right)^2+\left(y-y_M\right)^2+\left(z-z_M\right)^2 [/mm] \ = \ [mm] r^2$ [/mm] (Stichwort: quadratische Ergänzung).
Gruß vom
Roadrunner
|
|
|
|
|
Ja stimmt! Das liegt auf der Hand. Vielen Dank euch beiden!
|
|
|
|