www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Kurvendiskussion?
Status: (Frage) beantwortet Status 
Datum: 22:06 Mo 08.04.2013
Autor: serious2005

Hallo,
ich habe mal eine frage zu Kurfendiskussion.
Habe ich das richtig in Erinnerung das man bei einer Funktion den Nenner 0 setzen muss um die Polstelle und Def.lücke zu erhalten? und falls deie nullstelle des nenners gleich auch der nullstelle des zählers entspricht ist es eine def.lücke und ansonsten nur ne polstelle?
außerdem wie berechnet man senktrechte asymtoten? muss man sich von links und von rechts an seine polstelle annähren?
bei waagrechten asymtoten achtet man doch auf die potenzen der funktion oder? also mit zählergrad entspricht nennergrad usw....

ganz lieben gruß serious

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mo 08.04.2013
Autor: Event_Horizon

Hallo!

> Hallo,
>  ich habe mal eine frage zu Kurfendiskussion.
>  Habe ich das richtig in Erinnerung das man bei einer
> Funktion den Nenner 0 setzen muss um die Polstelle und
> Def.lücke zu erhalten? und falls deie nullstelle des
> nenners gleich auch der nullstelle des zählers entspricht
> ist es eine def.lücke und ansonsten nur ne polstelle?

Das ist fast richtig.

Betrachte [mm] \frac{1}{(x-1)} [/mm]
Das ist für x=1 nicht definiert, und hat dort eine Polstelle.

jetzt [mm] \frac{(x-1)}{(x-1)}=1 [/mm]

Du kannst den Term (x-1) rauskürzen, und dann ist die Funktion =1, es gibt also keine Polstellen. Allerdings besteht die Funktionsvorschrift eben aus dem bruch, und in den darfst du x=1 nicht einsetzen. Deshalb ist das eine Definitionslücke.

So weit hast du das richtig verstanden. Aber jetzt:

[mm] \frac{(x-1)^2}{(x-1)}=(x-1) [/mm]  

hat nur eine Defintionslücke.

[mm] \frac{(x-1)^2}{(x-1)^3}=\frac{1}{(x-1)} [/mm]  
hat aber eine Polstelle, weil nach dem Kürzen die Nullstelle im Nenner bleibt!

D.h.: Ist der Grad der Nullstelle im Nennner höher als der Grad der gleichen Nullstelle im Zähler, ist es eine Polstelle, sonst eine Definitionslücke.




>  außerdem wie berechnet man senktrechte asymtoten? muss
> man sich von links und von rechts an seine polstelle
> annähren?

Ja, am besten schreibst du dir Zähler und Nenner als Faktoren hin (dabei darfst du kürzen!)

Beispiel:

[mm] -\frac{(x-2)(x+2)}{(x-1)(x+1)^2x} [/mm]

Es gibt Polstellen bei [mm] $x=\pm1$ [/mm] und $x=0_$ Frage: Wie sieht die Asymptote für x=-1 aus, wenn man von links kommt? (Das wird gerne mit sowas wie  [mm] $x\mapsto-1_-$ [/mm] bezeichnet)
Schreibe für jeden Faktor außer [mm] (x+1)^2 [/mm] drüber/drunter, ob er für x=-1 positv oder negativ ist.
Dann schau dir an, was [mm] (x+1)^2 [/mm] für Werte macht, die etwas kleiner als -1 sind. Wegen dem Quadrat ist das immer positiv! Also "+".
Vergiß auch nicht, daß vor dem bruch schon ein "-" steht!

[mm] \green{\underbrace{-}_{-}}\frac{\overbrace{(x-2)}^{-}\overbrace{(x+2)}^{+}}{\underbrace{(x-1)}_{-}\red{\underbrace{(x+1)^2}_{+}}\underbrace{x}_{-}} [/mm]


Du hast hier also sechs Faktoren, von denen vier negativ sind. Wegen "minus mal minus ist plus" ist das Gesamtergebnis positiv, und der linke Ast dieser Polstelle geht gegen [mm] +\infty [/mm] . (der rechte auch, wegen dem Quadrat)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]