www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Kurvenintegral
Kurvenintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 30.07.2008
Autor: Surfer

Hallo, stecke gerade an folgender Kurvenintegralaufgabe:

Gegeben Sei die Funktion
f: [mm] \IR^{2} [/mm] \ {(2,0)} [mm] \to \IR: (x_{1},x_{2})\mapsto \bruch{x_{1}}{(x_{1}-2)^{2} + x_{2}^{2}} [/mm]

Weiter sei K die obere Hälfte eines Kreises um (2,0) mit radius 2. berechnen Sie das Kurvenintegral [mm] \integral_{}^{}_{K}{f(s) ds} [/mm]

Jetzt kann ich doch das eigentlich mit reelen Werten machen oder über Polarkoordinaten oder? Was ist der bessere Weg?

lg Surfer

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 30.07.2008
Autor: Somebody


> Hallo, stecke gerade an folgender Kurvenintegralaufgabe:
>  
> Gegeben Sei die Funktion
>  f: [mm]\IR^{2}[/mm] \ {(2,0)} [mm]\to \IR: (x_{1},x_{2})\mapsto \bruch{x_{1}}{(x_{1}-2)^{2} + x_{2}^{2}}[/mm]
>  
> Weiter sei K die obere Hälfte eines Kreises um (2,0) mit
> radius 2. berechnen Sie das Kurvenintegral
> [mm]\integral_{}^{}_{K}{f(s) ds}[/mm]
>  
> Jetzt kann ich doch das eigentlich mit reelen Werten machen
> oder über Polarkoordinaten oder?

Reell bleibts in jedem Fall.

> Was ist der bessere Weg?

Keine Ahnung, aber in Polarkoordinaten geht es jedenfalls sehr gut. Sei etwa [mm] $x_1=2\cos(\varphi)+2, x_2 [/mm] = [mm] 2\sin(\varphi)$, $\varphi=0\ldots \pi$, [/mm] dann ist das Linienelement $ds = [mm] 2d\varphi$ [/mm] und daher das gesuchte Integral:

[mm]\integral_{}^{}_{K}{f(s) ds}=\integral_0^\pi \frac{2\cos(\varphi)+2}{(2\cos\varphi)^2+(2\sin\varphi)^2}\;2\,d\varphi=\integral_0^\pi\left(\cos(\varphi)+1\right)\; d\varphi=\ldots[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]