Kurvenintegral in Kugelkoordin < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo, ich muss ein Kurvenintegral berechnen. Dazu habe ich Anfangs- und Endpunkt gegeben: [mm] \{r_1=R, \phi_1=\pi , \theta_1=\frac{\pi}{2} \} [/mm] und [mm] \{r_2=3R, \phi_2=\frac{\pi}{2} , \theta_2=\frac{\pi}{2} \}
[/mm]
Als Vekorfeld habe ich die Gravitationskraft gegeben: [mm] F=-GmM*\frac{\vec{r}}{r^3}=-GmM*\frac{\vec{e_r}}{r^2}
[/mm]
Wie kann ich nun das Kurvenintegral über den kürzesten Weg ausrechnen? In kartesischen Koordinaten würde ich jetzt eine Geradengleichung durch die beiden Punkte aufstellen. Aber das kann ich ja jetzt nicht so einfach machen.
Umrechnen in kart. Koord. bringt mich auch nicht weiter, da ich nicht weiß wie dann die Gewichtskraft aussieht. Diese hängt ja auf jeden Fall nur von der 1. Komponente (dem Radius) ab.
Danke
Gruß Patrick
|
|
|
|
Hallo PatrickX,
> Hallo, ich muss ein Kurvenintegral berechnen. Dazu habe ich
> Anfangs- und Endpunkt gegeben: [mm]\{r_1=R, \phi_1=\pi , \theta_1=\frac{\pi}{2} \}[/mm]
> und [mm]\{r_2=3R, \phi_2=\frac{\pi}{2} , \theta_2=\frac{\pi}{2} \}[/mm]
>
> Als Vekorfeld habe ich die Gravitationskraft gegeben:
> [mm]F=-GmM*\frac{\vec{r}}{r^3}=-GmM*\frac{\vec{e_r}}{r^2}[/mm]
Ist [mm]\overrightarrow{r}=\pmat{x \\ y \\ z}[/mm]
mit
[mm]x=r*\cos\left(\phi\right)\cos\left(\theta\right)[/mm],
[mm]y=r*\sin\left(\phi\right)\cos\left(\theta\right)[/mm],
[mm]z=r*\sin\left(\theta\right)[/mm],
dann berechne
[mm]\overrightarrow{r} \* \pmat{dx \\ dy \\ dz}[/mm]
,wobei
[mm]dx=\bruch{\partial x}{\partial r} \ dr + \bruch{\partial x}{\partial \phi} \ d\phi + \bruch{\partial x}{\partial \theta} \ d\theta[/mm]
[mm]dy=\bruch{\partial y}{\partial r} \ dr + \bruch{\partial y}{\partial \phi} \ d\phi + \bruch{\partial y}{\partial \theta} \ d\theta[/mm]
[mm]dz=\bruch{\partial z}{\partial r} \ dr + \bruch{\partial z}{\partial \phi} \ d\phi + \bruch{\partial z}{\partial \theta} \ d\theta[/mm]
>
> Wie kann ich nun das Kurvenintegral über den kürzesten Weg
> ausrechnen? In kartesischen Koordinaten würde ich jetzt
> eine Geradengleichung durch die beiden Punkte aufstellen.
> Aber das kann ich ja jetzt nicht so einfach machen.
> Umrechnen in kart. Koord. bringt mich auch nicht weiter, da
> ich nicht weiß wie dann die Gewichtskraft aussieht. Diese
> hängt ja auf jeden Fall nur von der 1. Komponente (dem
> Radius) ab.
>
> Danke
> Gruß Patrick
Gruß
MathePower
|
|
|
|