www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kurvenintegrale
Kurvenintegrale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 So 23.05.2010
Autor: moerni

Aufgabe
Gegeben Kurven [mm] T_1, T_2 \subset \mathbb{C} [/mm] durch [mm] \gamma_1, \gamma_2: [/mm] [0,2 [mm] \pi] \to \mathbb{C} [/mm] mit [mm] \gamma_1: [/mm] t [mm] \mapsto [/mm] cos(t)+isin(t), [mm] \gamma_2 [/mm] : t [mm] \mapsto [/mm] acos(t)+bisin(t), a,b >0
zu zeigen: [mm] \int_{T_1} \frac{1}{z}dz [/mm] = [mm] \int_{T_2} \frac{1}{z}dz [/mm]

Hallo.

Ich stehe vor dieser Aufgabe und bräuchte etwas Hilfe...
Ich habe bisher folgende Überlegungen angestellt:

Nach unserer Vorlesung gilt für eine Kurve C: z(t)=Rcos(t)+iRsin(t), 0 [mm] \le [/mm] t [mm] \le [/mm] 2 [mm] \pi, [/mm] R [mm] \neq [/mm] 0, dass [mm] \int_C \frac{1}{z} [/mm] dz = 2 [mm] \pi [/mm] i, also gilt auch insbesondere für R=1: [mm] \int_{T_1} \frac{1}{z} [/mm] dz = 2 [mm] \pi [/mm] i. Für a=b ist also nichts zu zeigen.
Ich habe nun versucht, das Integral über der Kurve [mm] T_2 [/mm] direkt auszurechnen, versinke dabei aber in Additionstheoremen und komme nicht hin...

Herangehensweise für a [mm] \neq [/mm] b.
Man müsste wohl OE annehmen, dass a > b ist. Überlegungen:
1. Man könnte vielleicht irgendwie Kurve [mm] T_1 [/mm] mit [mm] T_2 [/mm] verknüpfen (wie geht das eigentlich? haben wir nie richtig definiert und leider finde ich nichts hilfreiches im Internet... :-(
Dann: [mm] \int_{T_1} \frac{1}{z} [/mm] dz= [mm] \int_{T_1} \frac{1}{z} [/mm] dz -  [mm] \int_{T_2} \frac{1}{z} [/mm] dz + [mm] \int_{T_2} \frac{1}{z} [/mm] dz = [mm] \int_{\overline{T}} \frac{1}{z} [/mm] dz + [mm] \int_{T_2} \frac{1}{z} [/mm] dz , wobei [mm] \overline{T} [/mm] durch Verknüpfung von [mm] T_1 [/mm] und [mm] -T_2 [/mm] entsteht.
2. Jetzt wäre zu zeigen, dass [mm] \int_{\overline{T}} \frac{1}{z} [/mm] dz =0.
3. Wie könnte man vielleicht mit dem Integralsatz von Cauchy das beweisen? Wir haben den Cauchyschen Integralsatz so formuliert: "Sei f eine ganze Funktion, a [mm] \in \mathbb{C} [/mm] und sei C eine Kurve, C: [mm] Re^{it}, [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 2 [mm] \pi, [/mm] R > |a|. Dann gilt f(a)= [mm] \frac{1}{2 \pi i} \int_C \frac{f(z)}{z-a} [/mm] dz". Hilft dieser Satz hier weiter? Wie kann ich zeigen, dass [mm] f(z)=\frac{1}{z} [/mm] auf ganz [mm] \mathbb{C} [/mm] differenzierbar ist?

Über eine Hilfe wäre ich sehr dankbar,
lg moerni

        
Bezug
Kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mo 24.05.2010
Autor: Leopold_Gast

[Dateianhang nicht öffentlich]

[mm]\gamma_1[/mm] und [mm]\gamma_2[/mm] sind der Einheitskreis und die Ellipse mit den Halbachsen [mm]a,b[/mm] um den Ursprung als Mittelpunkt, jeweils positiv orientiert. Jetzt berechne die Summe der Integrale über die grüne und die rote Kurve und begründe,

i) warum diese Summe einerseits 0 ist

ii) warum diese Summe andererseits gleich [mm]\int_{\gamma_1} \frac{\mathrm{d}z}{z} - \int_{\gamma_2} \frac{\mathrm{d}z}{z}[/mm] ist

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]