www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kurze Frage zum Lebesgue Maß
Kurze Frage zum Lebesgue Maß < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage zum Lebesgue Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 05.12.2005
Autor: steelscout

Hi,
kurz und knapp:
Als Teil einer Aufgabe benötige ich das Lebesguemaß der Menge [mm] M:=\{x | x \mbox{ irrational}\}, x\in [/mm] [0,1].
Nun weiß ich bereits, dass das Lebesguemaß einer abzählbaren Teilmenge von [mm] \IR [/mm] eine Lebesguesche Nullmenge ist, aber die irrationalen Zahlen bilden doch eine überabzählbare Menge, oder?
Naiverweise würde ich da auch vorgehen, wie bei der abzählbaren, da es ja nur Vereinigungen von Punkten sind, von denen jeweils das Maß 0 ist, aber irgendwas sagt mir, dass das bei einer überabzählbaren Menge nicht so ist.

Wär nett, wenn das kurz jemand erklären könnte.
greetz steele

        
Bezug
Kurze Frage zum Lebesgue Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mo 05.12.2005
Autor: MatthiasKr

Hallo steele,

es ist doch so, daß sich das reelle intervall $[0,1]$ als (disjunkte) vereinigung der rationalen (R) und der irrationalen (M) zahlen in diesem intervall ergibt.also

[mm] $[0,1]=M\cup [/mm] R$

R rationale Zahlen, M irrationale Zahlen.

außerdem ist das lebesgue-maß additiv, dh.

[mm] $\mu ([0,1])=\mu(M)+\mu(R)$. [/mm]

Was ist also [mm] $\mu(M)$? [/mm]

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]