www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - LGS
LGS < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 18.11.2005
Autor: sunshinenight

Hallo,

folgendes LGS ist gegeben:

[mm] 2x_{1}+x_{2}+x_{3}=0 [/mm]
-2 [mm] \lambda x_{1}+ \lambda x_{2}+9x_{3}=6 [/mm]
[mm] 2x_{1}+2x_{2}+\lambda x_{3}=1 [/mm]

a) eindeutige Lösung? [mm] \lambda \not= [/mm] 3 und [mm] \lambda \not=-1,5 [/mm]
b) unendlich viele Lösungen? [mm] \lambda [/mm] =3
c) keine Lösungen? [mm] \lambda [/mm] =-1,5
d) Lösung für [mm] \lambda [/mm] =1?

[mm] x=(-\bruch{7}{10};1;\bruch{2}{5})^{T} [/mm]

e) Lösung zu b?

Hier habe ich nun ein Problem, denn ich bekomme zwar die richtigen Werte für den Parameter t heraus, aber die anderen Werte sind falsch.

Erhalte ja nach dem Anwenden des Gauß' Algorithmus folgendes Tableu:
2 1 1 0
0 1 2 1
0 0 0 0

danach ist ja [mm] x_{3} [/mm] frei wählbar, also [mm] x_{3}=t [/mm]
[mm] x_{2}+2t=1 [/mm] --> [mm] x_{2}=1-2t [/mm]
[mm] 2x_{1}+1-t=0 [/mm] --> [mm] x_{1}= \bruch{t}{2}-\bruch{1}{2} [/mm]

Sind die Lösungen falsch und wenn ja, wo ist mein Fehler?
[mm] x=(-\bruch{1}{2};1;0)^{T}+t(1;-4;2)^{T} [/mm] wäre ja dann die Lösung

Im Lösungsheft ist aber für den ersten Teil folgendes vermerkt:
[mm] x=(0;-1;1)^{T}+t [/mm] ....

Wie komme ich denn darauf?

mfg sunshinenight

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Fr 18.11.2005
Autor: steffenhst

Hallo,

auf den ersten Blick scheint mir die Anwendung des Gauss-Algorithmus nicht vollständig zu sein. Du musst die Koeefizientenmatrix in Treppennormalform überführen, dass hast du aber noch nicht, da in deiner zweiten Zeile die Elemente über 1 noch nicht 0 sind. Das muss aber sein.

Schau mal ob dir das erst mal hilft. Wenn nicht, dann schreibe noch einmal.

Grüße Steffen

Bezug
                
Bezug
LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 18.11.2005
Autor: sunshinenight

Hallo

Sorry, aber mir hilft das gar nichts. Das Tableu, welches ich hingeschrieben habe, erhalte ich durch den Gauß' Algorithmus, 1. wenn ich [mm] \lambda [/mm] in die Ausgangsgleichungen einsetze und den Spaß durchrechne und 2. wenn ich in das allgemeine Tableu:
2 1 1 0
0 1 [mm] (\lambda-1) [/mm] 1
0 0 [mm] (-2\lambda²+3\lambda+9) (-2\lambda+6) [/mm]
den Wert 3 für Lambda einsetze. Das allgemeine sollte richtig sein, denn die Fälle a) bis c) habe ich ja darüber richtig gelöst.

So wie dieses Tableu
2 1 1 0
0 1 2 1
0 0 0 0
sahen viele unserer Beispielaufgaben aus. Das heisst ja, dass die Lösungen einfach unendlicher Natur sind, also ist [mm] x_{3} [/mm] frei wählbar mit einem beliebigen Parameter t, so wie ich es erst schon geschrieben habe. Aber anscheinend steckt noch irgendwo ein Fehler, denn ich komme für x nicht auf
[mm] x=(0;-1;1)^{T}+t.... [/mm]

mfg sunshinenight

Bezug
                        
Bezug
LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Fr 18.11.2005
Autor: steffenhst

Hallo,

jetzt weiß ich was du meinst. Ist denn das GLS richtig, wenn ich nämlich 3 für lambda einsetze und dann Gauss anwende, dann komme ich auf das gleiche wie du. (Ich komme auf deine angegebene Lösung wenn die zweite Gleichung = -6 ist und nicht 6)

Die vierte Spalte ist die sog. spezielle Lösung (also 1,-1,0), klar. Um den weiteren Vektor zu ermitteln, gibt es mehrere Möglichkeiten. Ich habe mal gelernt, dass man die Zeile mit den Nullen streicht (also die dritte), dann so NullZeilen einfügt, dass aus der verbleibenden Matrix eine quadratische Matrix wird  (also die dritte Zeile doch wieder rein). Dann für das Element in der Diagonalen -1 einsetzen (also [mm] x_{33}). [/mm] Die Spalte für die du das gemacht hast, ist dann der t*... Vektor. (Manchmal können das auch mehr sein, je nachdem wieviele Zeilen du so ergänzen musst).

Ich hoffe das hilft so auf die Schnelle.

Grüße Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]