www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - L'Hospital für das Komplexe
L'Hospital für das Komplexe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital für das Komplexe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Di 25.01.2011
Autor: Wolve

Aufgabe
Sei G ein Gebiet, seien f,g [mm] \in $\partial [/mm] (G)$ und f,g [mm] \not \equiv [/mm] 0. Sei a [mm] \in [/mm] G mit f(a) = g(a) = 0. Zeigen Sie

a) [mm] \limes_{z\rightarrow a} \bruch{f(z)}{g(z)} [/mm] existiert genau dann, wenn [mm] \limes_{z\rightarrow a} \bruch{f'(z)}{g'(z)} [/mm] existiert.
(Hinweis: Fallunterscheidung nach der Ordnung der Nullstelle.)

b) Wenn die beiden äquivalenten Aussagen gelten, dann gilt:
[mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z)} [/mm] = [mm] \limes_{z\rightarrow a} \bruch{f'(z)}{g'(z)}$. [/mm]


[Dabei verwende ich [mm] $\partial [/mm] (G)$ als die Menge aller holomorpher Funktionen in G]

Schönen guten Tag,
bei dieser Aufgabe habe ich Schwierigkeiten sicher einen Lösungsweg zu finden. Aber ich möchte es dennoch versuchen, soweit ich kann...

a)

Da f und g holomorph sind besitzen sie lokal um a eine Taylorentwicklung:
$f(z) = [mm] \summe_{\nu=0}^{\infty} \bruch{f^{(\nu )}(a)}{\nu !} (z-a)^{\nu}$ [/mm]
$g(z) = [mm] \summe_{\nu=0}^{\infty} \bruch{g^{(\nu )}(a)}{\nu !} (z-a)^{\nu}$ [/mm]

Sei a Nullstelle von f der Ordnung n und von g der Ordnung m:
$f(z) = [mm] \summe_{\nu=n}^{\infty} \bruch{f^{(\nu )}(a)}{\nu !} (z-a)^{\nu} [/mm] = [mm] (z-a)^n \summe_{\nu=n}^{\infty} \bruch{f^{(\nu )}(a)}{\nu !} (z-a)^{\nu -n}$ [/mm]
$g(z) = [mm] \summe_{\nu=m}^{\infty} \bruch{g^{(\nu )}(a)}{\nu !} (z-a)^{\nu} [/mm] = [mm] (z-a)^m \summe_{\nu=m}^{\infty} \bruch{g^{(\nu )}(a)}{\nu !} (z-a)^{\nu -m}$ [/mm]

Somit existieren holomorphe Funktionen [mm] f^{\sim} [/mm] und [mm] g^{\sim}, [/mm] dass [mm] $f^{\sim}(a) \not= [/mm] 0$ und [mm] $g^{\sim}(a) \not= [/mm] 0$, [mm] f^{\sim}, g^{\sim} [/mm] nullstellenfrei.
[mm] \Rightarrow [/mm] $f(z) = [mm] (z-a)^n f^{\sim}(z)$ [/mm] und $g(z) = [mm] (z-a)^m g^{\sim}(z)$ [/mm]

Es gilt: [mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z}$ [/mm] = [mm] $\limes_{z\rightarrow a} \bruch{(z-a)^n f^{\sim}(z)}{(z-a)^m g^{\sim}(z)}$ [/mm] = [mm] $\limes_{z\rightarrow a} \bruch{1}{(z-a)^{m-n}} \bruch{f^{\sim}(z)}{g^{\sim}(z)}$ [/mm]

Fall 1: (m>n): [mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z)}$ [/mm] = ... = [mm] $\limes_{z\rightarrow a} \bruch{1}{(z-a)^{m-n}} \bruch{f^{\sim}(z)}{g^{\sim}(z)}$ \to \infty [/mm] mit (m-n)>0 [mm] \Rightarrow [/mm] Grenzwert ex. nicht

Fall 2: (m=n): [mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z)}$ [/mm] = ... = [mm] $\limes_{z\rightarrow a} \bruch{f^{\sim}(z)}{g^{\sim}(z)}$ [/mm] = const. und somit existent, da [mm] f^{\sim}, g^{\sim} [/mm] nullstellenfrei und holomorph, also diff'bar.

Fall 3: (m<n): [mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z)}$ [/mm] = ... = [mm] $\limes_{z\rightarrow a} \underbrace{(z-a)^{n-m}}_{\to 0} \bruch{f^{\sim}(z)}{g^{\sim}(z)} \to [/mm] 0, also existent.


Ich bin mir hierbei nicht sicher, ob meine Fallanalyse soweit korrekt war und ob sie wirklich auch zeigt, dass wenn der eine Limes aus der Aufgabenstellung exisiert, dann auch der andere existiert. Habe ich etwas vergessen???


b)

Hier weiß ich auch nicht so recht wie ich das zeigen soll, glaube ich bin generell etwas durcheinander gekommen. Könnte mir jemand sagen, womit ich das hier zeigen soll?



Bin für jede Hilfe dankbar.
Gruß Hendrik

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
L'Hospital für das Komplexe: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Mi 26.01.2011
Autor: Wolve

Nachtrag:

Ich glaube die Idee zur Teilaufgabe (a) habe ich gefunden...
Da ich ja die Nullstellen der entsprechenden Ordnungen rausgebracht habe ist jeweils die nächste Ableitung von [mm] f^{\sim} [/mm] und [mm] g^{\sim} [/mm] ungleich 0, somit existieren die Grenzwerte, bei n>m bin ich mir nicht sicher, müsste dann aber wegen dem Rausgezogenen weiterhin gegen 0 gehen.

Bei Teilaufgabe (b) bin ich mir weiterhin unsicher, womit ich arbeiten soll...

Bezug
        
Bezug
L'Hospital für das Komplexe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Mi 26.01.2011
Autor: fred97

Ich zeig Dir mal, wie es geht, wenn f und g in a jeweils eine einfache Nullstelle haben (den allgemeinen Fall darfst Du Dir selbst überlegen):

In diesem Fall gibt es [mm] f_1,g_1 [/mm] $ [mm] \in [/mm] $  $ [mm] \partial [/mm] (G) $  mit:

              $f(z)= [mm] (z-a)f_1(z)$, [/mm]   $g(z)= [mm] (z-a)g_1(z)$ [/mm]  für $z [mm] \in [/mm] G$

und

              [mm] $f'(a)=f_1(a) \ne [/mm] 0$,   [mm] $g'(a)=g_1(a) \ne [/mm] 0$

Dann folgt:

              [mm] \bruch{f(z)}{g(z)}= \bruch{f_1(z)}{g_1(z)} [/mm]

also

             [mm] $\limes_{z\rightarrow a} \bruch{f(z)}{g(z)}= \limes_{z\rightarrow a}\bruch{f_1(z)}{g_1(z)}= \bruch{f'(a)}{g'(a)}= \limes_{z\rightarrow a} \bruch{f'(z)}{g'(z)}$ [/mm]

FRED

              

Bezug
                
Bezug
L'Hospital für das Komplexe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 26.01.2011
Autor: Wolve

Ah, mit dem Ansatz von $f(z) = f(a) + f'(z)(z-a)$ muss ich arbeiten.
Und aus der Angabe entnehme ich, dass $f(a) = g(a) = 0$.

Müsste dann aber nicht auch allgemein so sein, dass...

$f(z) = f(a) + f'(z)(z-a)$ und $g(z) = g(a) + g'(z)(z-a)$

Somit [mm] $\limes_{z\rightarrow a} \bruch [/mm] {f(z)}{g(z)}$ = [mm] $\limes_{z\rightarrow a} \bruch{f(a) + f'(z)(z-a)}{g(a) + g'(z)(z-a)}$ [/mm] = [mm] $\limes_{z\rightarrow a} \bruch{f'(z)(z-a)}{g'(z)(z-a)}$ [/mm] = [mm] $\limes_{z\rightarrow a} \bruch{f'(z)}{g'(z)}$ [/mm] mit $f(a) = g(a) = 0$.

Muss ich hier auch nach Fällen unterscheiden oder kann ich das so verallgemeinernd ausdrücken??

Glaube aber so wäre es zu leicht, wenn ich aus dem konkreten Beispiel der einfachen Nullstelle auf die allgemein Version schließen könnte...

Gruß Hendrik

Bezug
                        
Bezug
L'Hospital für das Komplexe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Do 27.01.2011
Autor: rainerS

Hallo Hendrik!

> Ah, mit dem Ansatz von [mm]f(z) = f(a) + f'(z)(z-a)[/mm] muss ich
> arbeiten.

Der Ansatz ist im Allgemeinen falsch. (Er impliziert, dass f ein komplexer Logarithmus ist.)

Das hat Fred auch nicht geschrieben. Wenn f eine Nullstelle 1. Ordnung in a hat, dann existiert eine holomorphe Funktion [mm] $f_1$, [/mm] sodass $f(z) = [mm] f_1(z)(z-a)$ [/mm] und im Punkt a gilt: $f'(a) = [mm] f_1(a)\not=0$. [/mm] Über andere Punkte ist nichts ausgesagt!

Nun verallgemeinere diese Aussage auf Nullstellen höherer Ordung!

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]