www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Ladungsdichte
Ladungsdichte < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ladungsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Mi 14.01.2009
Autor: tedd

Aufgabe
[Dateianhang nicht öffentlich]

Also ich habe im Moment gar keine Ahnung wie ich hier vorgehen soll.

Ich kann mir ein Ersatzschaltbild malen wo ich dann 2 parallel geschaltete Plattenkondensatoren habe, einen mit Dielektrikum und einen ohne.

Wobei [mm] C_1=\epsilon_0*\epsilon_r*\bruch{10*10^{-2}m*30*10^{-2}m}{1*10^{-2}m}=132,81pF [/mm]

und [mm] C_2=\epsilon_0*\bruch{20*10^{-2}m*30*10^{-2}m}{1*10^{-2}m}=53,13pF [/mm]

[mm] C_0=C_1+C_2=185,94pF [/mm]

für die Flächenladungsdichte habe ich folgendes gefunden:

[mm] \sigma=\bruch{Q}{A}=\bruch{C*U}{A}=\epsilon_0*\epsilon_r*E [/mm]

Mein Problem ist jetzt, wie ich die Flächenladungsdichte in Abhängigkeit von y ausrechnen und danach zeichnen soll...

Hilft mir da weiter irgendwie sowas zu fummeln?

[mm] C_1=\epsilon_0*\epsilon_r*\bruch{x*y}{d} [/mm]

mit [mm] y\in[10;20] [/mm]

und

[mm] C_2=\epsilon_0*\bruch{x*y}{d} [/mm]

mit [mm] y\in[0;10]\cup[20;30] [/mm] ?

und das dann in
[mm] \sigma=\bruch{Q}{A}=\bruch{(C_1+C_2)*U}{A} [/mm]
einsetze? [keineahnung]

Danke und Gruß,
tedd

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Mi 14.01.2009
Autor: tedd

Wenn mein [mm] A=\bruch{x*y}{d} [/mm] ist würde sich das ja wieder rauskürzen wenn ich in [mm] \sigma=\bruch{C*U}{A} [/mm] einsetze ...

Ich glaube besser wäre [mm] \sigma=\bruch{Q}{\underbrace{A}_{x*y}} [/mm]
Die jeweiligen Q's wären dann ja Konstant denke ich und dann setze ich einfach für x und y bestimmte Punkte ein?

Nur wie ich das mit den 2 parallel geschalteten Kondensatoren mache ist mir noch nicht ganz klar...


Vielleicht beide einzeln machen und dann irgendwie addieren.

Danke und Gruß,
tedd

Bezug
        
Bezug
Ladungsdichte: Fast okay
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 14.01.2009
Autor: Infinit

Hallo tedd,
Dein Ansatz geht schon in die richtige Richtung, die anliegende Spannung ist bekannt und für jeden der drei Bereiche ist die Ladungsdichte konstant, ändert sich aber natürlich mit y aufgrund des Dielektrikums. Der untere und der obere Bereich liefern dieselbe Größe, die Kapazität ist schließlich gleich groß,  der mittlere Bereich liefert aufgrund des Epsilons einen fünfmal so großen Wert. Arbeite mit den drei Teilkapazitäten und dann kannst Du recht einfach die Flächenladung bestimmen.
Viel Spaß dabei,
Infinit

Bezug
                
Bezug
Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 16.01.2009
Autor: tedd

Gut! [ok]
Danke für die Hilfe Infinit!

Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]