www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Lage einer Geraden zur Ebene
Lage einer Geraden zur Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage einer Geraden zur Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 17.01.2008
Autor: schlagziele

Aufgabe
Gegeben ist die Gerade h: [mm] \vec{x}=\vektor{4 \\ -2 \\ 3} [/mm] + [mm] r\vektor{2 \\ 3 \\ -3)} [/mm]
Untersuchen Sie die Lage der Geraden h zur Ebene E: [mm] \vec{x}=\vektor{3 \\ -2 \\ -1} [/mm] + [mm] r\vektor{1 \\ 6 \\ 3)} [/mm] + [mm] s\vektor{-1 \\ 3 \\ 6)} [/mm]

Bitte um Hilfestellung wie ich an die Aufgabe rangehen muss! Danke =)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lage einer Geraden zur Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 17.01.2008
Autor: angela.h.b.

Hallo,

Du kannst die Aufgabe lösen, indem Du die Gleichungen gleichsetzt und nach r,s,t auflöst:

[mm] \vektor{4 \\ -2 \\ 3}[/mm] [/mm] + [mm] r\vektor{2 \\ 3 \\ -3)}=\vektor{3 \\ -2 \\ -1}[/mm] [/mm] + [mm] s\vektor{1 \\ 6 \\ 3)}[/mm] +t\vektor{-1 \\ 3 \\ 6)} [/mm]

Du erhältst hier drei Gleichungen.

Hast Du eine eindeutige Lösung, so gibt es einen Schnittpunkt, Du erhältst ihn dann durch Einsetzen von r (oder s und t),

gibt's keine Lösung, haben Gerade und Ebene keinen Schnittpunkt, gibt's mehr als eine Lösung, liegt die Gerade in der Ebene.

Eine andere Möglichkeit ist die, daß Du erstmal prüfst, ob der Richtungsvektor der Geraden und die beden Richtungsvektoren der Ebene komplanar sind.

Wenn nein: die Gerade schneidet die Ebene

Wenn ja: die gerade ist parallel zur Ebene, Du mußt dann noch feststellen, ob sie in der Ebene liegt, oder in einem festen Abstand zur Ebeneverläuft.

Gruß v. Angela




> Gegeben ist die Gerade h: [mm]\vec{x}=\vektor{4 \\ -2 \\ 3}[/mm] +
> [mm]r\vektor{2 \\ 3 \\ -3)}[/mm]
>  Untersuchen Sie die Lage der
> Geraden h zur Ebene E: [mm]\vec{x}=\vektor{3 \\ -2 \\ -1}[/mm] +
> [mm]r\vektor{1 \\ 6 \\ 3)}[/mm] + [mm]s\vektor{-1 \\ 3 \\ 6)}[/mm]
>  Bitte um
> Hilfestellung wie ich an die Aufgabe rangehen muss! Danke
> =)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]