Lampe am Seil < Mechanik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:19 Do 25.04.2013 | Autor: | WSparrow |
Aufgabe | a) Eine Lampe mit der Masse von 20kg hängt in der Mitte eines Seils zwischen zwei 30m voneinander entfernten Masten. Das Seil erfährt den Durchhang h=50cm. Wie groß sind die Zugkräfte am Seil?
b) Wie schwer ist ein Körper der die Länge (l=30cm) einer Feder (D=2000N/m) verdoppelt? |
Hallo :)
Ich habe zu oben genannten Aufgaben ein Verständnisproblem bzw. komme an einer Stelle nicht weiter.
Zu a) habe ich bereits eine Skizze gezeichnet und berechnet welche Gewichtskraft die Lampe hat.
F=m*g
[mm] F=20kg*9,81\bruch{m}{s²}
[/mm]
F=196,2 N
Nun habe ich mir überlegt, dass ich zunächst mal den Winkel ausrechne, mit dem das Seil durchhängt.
Das mache ich folgendermaßen:
[mm] tan\alpha=0,5/15 [/mm]
15, weil wir es ja mit dem halben Seil zutun haben.
Wenn ich nun [mm] \alpha [/mm] ausrechne erhalte ich
[mm] \alpha=1,89°
[/mm]
Leider weiß ich nun nicht mehr, wie ich von dem Winkel auf die Zugkraft an beiden Seilen komme. Ich weiß, dass jedes Seil gleich viel trägt, aber dann beißt es aus. Ich hoffe, ihr könnt mir helfen.
Zu b) fällt mir bis jetzt ein, dass ja die Länge der Feder verdoppelt wird, d.h. auf 60cm.
Für eine Feder gilt ja: F=D*s
also könnte ich doch D und s einsetzen, wodurch ich die Kraft ermittle, mit der das Gewicht an der Feder zieht und darüber dann errechnen (also anhand der Gewichtskraft) wie schwer das Gewicht ist, oder?
Danke schonmal =)
|
|
|
|
Hallo WSparrow,
das sieht alles ganz gut aus.
> a) Eine Lampe mit der Masse von 20kg hängt in der Mitte
> eines Seils zwischen zwei 30m voneinander entfernten
> Masten. Das Seil erfährt den Durchhang h=50cm. Wie groß
> sind die Zugkräfte am Seil?
>
> b) Wie schwer ist ein Körper der die Länge (l=30cm) einer
> Feder (D=2000N/m) verdoppelt?
> Hallo :)
>
> Ich habe zu oben genannten Aufgaben ein Verständnisproblem
> bzw. komme an einer Stelle nicht weiter.
>
> Zu a) habe ich bereits eine Skizze gezeichnet und berechnet
> welche Gewichtskraft die Lampe hat.
>
> F=m*g
> [mm]F=20kg*9,81\bruch{m}{s²}[/mm]
> F=196,2 N
>
> Nun habe ich mir überlegt, dass ich zunächst mal den
> Winkel ausrechne, mit dem das Seil durchhängt.
> Das mache ich folgendermaßen:
>
> [mm]tan\alpha=0,5/15[/mm]
>
> 15, weil wir es ja mit dem halben Seil zutun haben.
> Wenn ich nun [mm]\alpha[/mm] ausrechne erhalte ich
> [mm]\alpha=1,89°[/mm]
Das soll wohl eine Angabe in ° (Altgrad) sein. Ich bekomme einen minimal anderen Wert heraus, [mm] $\approx{1,909}^{\circ}$.
[/mm]
> Leider weiß ich nun nicht mehr, wie ich von dem Winkel auf
> die Zugkraft an beiden Seilen komme. Ich weiß, dass jedes
> Seil gleich viel trägt, aber dann beißt es aus. Ich
> hoffe, ihr könnt mir helfen.
Eine Skizze dürfte helfen. Aus den geometrischen Gegebenheiten der Aufgabe kannst Du die nötigen Kräftedreiecke bilden. Sei [mm] F_L [/mm] die Gewichtskraft der Lampe und [mm] F_S [/mm] die Zugkraft auf jedem der beiden Seile, dann gilt:
[mm] 2F_S*\sin{\alpha}=F_L
[/mm]
Die Kraft ist größer, als man vermutet...
> Zu b) fällt mir bis jetzt ein, dass ja die Länge der
> Feder verdoppelt wird, d.h. auf 60cm.
>
> Für eine Feder gilt ja: F=D*s
> also könnte ich doch D und s einsetzen, wodurch ich die
> Kraft ermittle, mit der das Gewicht an der Feder zieht und
> darüber dann errechnen (also anhand der Gewichtskraft) wie
> schwer das Gewicht ist, oder?
Genau, so ist es.
Grüße
reverend
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:50 Do 25.04.2013 | Autor: | WSparrow |
Vielen Dank erstmal =) Dann lag ich ja wohl doch nicht ganz falsch =)
mein Ergebnis lautet: 2974,46 N
Die Herleitung der Formel ist mir klar, jedoch frage ich mich, warum du 2*Fs nimmst?! Fs ist ja in diesem Fall die Hypothenuse, die ich bestimmen muss und sie ist ja eigentlich zweimal vorhanden, nämlich auf der anderen Seite von der Lampe nochmals. Ist das der Grund, wieso man das doppelt nimmt und ist Fs nun die Zugkraft an einem Seil oder an beiden?
Danke schonmal =)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:11 Do 25.04.2013 | Autor: | M.Rex |
Hallo
> Vielen Dank erstmal =) Dann lag ich ja wohl doch nicht ganz
> falsch =)
>
> mein Ergebnis lautet: 2974,46 N
Ohne den Taschenrechner abzusetzen (von [mm] tan(\alpha)=\frac{0,15}{15} [/mm] an) komme ich auf [mm] F_{s}=2944,6N
[/mm]
>
> Die Herleitung der Formel ist mir klar, jedoch frage ich
> mich, warum du 2*Fs nimmst?! Fs ist ja in diesem Fall die
> Hypothenuse, die ich bestimmen muss und sie ist ja
> eigentlich zweimal vorhanden, nämlich auf der anderen
> Seite von der Lampe nochmals. Ist das der Grund, wieso man
> das doppelt nimmt und ist Fs nun die Zugkraft an einem Seil
> oder an beiden?
Wie du richtig erkannt hast, ist [mm] F_s [/mm] die Hypotenuse eines Dreiecks und [mm] F_l [/mm] die Gegenkathete.
Da aber beide Seile je die Hälfte der Zugkraft aufbringen müssen, musst du die Gesamtzugkraft halbieren, um die Karft für ein Seil zu bekommen.
>
> Danke schonmal =)
>
>
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Do 25.04.2013 | Autor: | WSparrow |
Ach stimmt, ich hatte den falschen Winkel genommen für die Berechnung. Jetzt stimmt mein Ergebnis aber Gott sei dank überein =)
Gut, habe meine Zugkraft jetzt halbiert ;)
Danke sehr =)
|
|
|
|