www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Laplace Transformation - wieso
Laplace Transformation - wieso < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Transformation - wieso: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mo 18.01.2010
Autor: qsxqsx

Hallo,

Ich frage mich wieso die Laplace Transformation so ist, wie sie ist. Ich würde mir diesen Bildbereich/Frequenzbereich gerne vorstellen können. Ist das so eine Art gekrümmter Raum oder sowas ähnliches, in dem man dann rechnet?

Natürlich habe ich den Wiki Artikel gelsen...aber wieso wird die Laplace Transformation so gemacht, wie sie gemacht wird, mit einem Integral? Einfach aus rein rechnerischen Gründen hat man herausgefunden, dass man so gewisse Probleme einfacher lösen kann?

Also es steht ja, dass man in diesem neuen "Raum" so Differentationen und Integrationen mit Additionen und Multiplikation bewältigen kann.

Kann man den Raum irgendwie als Funktion veranschaulichen? Irgendein 3D plott?


Danke.

Qsxqsx

        
Bezug
Laplace Transformation - wieso: Literaturtipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mo 18.01.2010
Autor: Herby

Hi,

es gibt von Otto Föllinger das Buch: Laplace-, Fourier- und z-Transformation. Müsste auch in fast jeder Bibliothek vorhanden sein.


Liebe Grüße
Herby

Bezug
                
Bezug
Laplace Transformation - wieso: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mo 18.01.2010
Autor: qsxqsx

Danke, habe mir die Buchkritik mal angeschaut, tönt gut: "...und macht die abstrakten Rechenregeln dabei verständlich."

Ich werds mir mal unter die Luppe nehmen. Trotzdem wäre es nett wenn mir jemand zu meiner Frage was in ein paar sätzen schreiben könnte, aber vielleicht kann man die Laplace Transformation gar nicht intuitiv verstehen? Das wäre auch eine Antwort. Ich habe diese Thema (noch) nicht in der Uni. Es hat mich nur mal so interessiert, vom Verständnis her.


Bezug
        
Bezug
Laplace Transformation - wieso: Mach Dir kein Bild
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 18.01.2010
Autor: Infinit

Hallo qsxqsx,
bitte versuche nicht, Dir hierbei irgendwelche gekrümmten Räume oder dergleichen vorstellen, das hilft einfach nicht weiter. Ist Dir die Idee der Fouriertransformation bekannt? Hierbei geht es darum, eine Zeitfunktion mit Hilfe neuer Basisfunktionen, die in diesem Falle aus Sinus- und Kosinusschwingungen bestehen, darzustellen. Damit sind jedoch Einschwingvorgänge, wie sie häufig in der E-Technik auftauchen, nicht beschreibbar. Multipliziert man jedoch diese Sinus- oder Kosinusschwingungen mit auf- oder abklingenden e-Funktionen, dann sieht die Sache schon anders aus. Jede Basisfunktion im Laplacebereich lässt sich mit Hilfe einer e-Funktion darstellen, die ein komplexes Argument besitzt. Dieses Argument, p oder s genannt, lässt sich schreiben als
$$ s = [mm] \delta [/mm] + j [mm] \omega [/mm] $$ und hierbei gibt das Delta die Dämpfungskonstante der e-Funktion an, mit der eine Schwingung der Frequenz Omega gedämpft wird. Damit hat man einen Basissatz von Funktionen, die aus gedämpften Schwingungen bestehen und die sogar die Fouriertransformierte beinhalten. Für Delta = 0 hat man eine ungedämpfte Schwingung wieder. Der Rest ist Anwendung der Mathematik auf komplexe Funktionen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Laplace Transformation - wieso: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mo 18.01.2010
Autor: qsxqsx

Das mit Dämpfung ist mir klar, von Fourier-Transformation hab ich schon gehört... Schade, dass es kein "Bild" davon gibt. Aber ich versteh so langsam die Zusammenhänge zwischen den Dingen. Danke.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]