www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Laplace Verteilung
Laplace Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Verteilung: Verteilungsfunktion
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 06.06.2007
Autor: doener

Aufgabe
zur laplace verteilung [mm] \bruch{1}{2}e^{-|x|} [/mm] gebe man die Verteilungsfunktion an.

ich kenne die lösung zu dieser aufgabe, sie lautet

F = [mm] \bruch{1}{2}\begin{cases}e^{x} , & \mbox{für } x \le 0 \\ 2 - e^{-x}& \mbox{für }x > 0\end{cases} [/mm]

allerdings komme ich nur teilweise auf die lösung!

zuerst mache ich eine fallunterscheidung, wegen der betragsfunktion:

[mm] \bruch{1}{2}e^{-|x|} [/mm] = [mm] \begin{cases} \bruch{1}{2}e^{-x}, & \mbox{für } x > 0 \\ \bruch{1}{2}e^{x}, & \mbox{für } x \le 0 \end{cases} [/mm]

[mm] \integral{\bruch{1}{2}e^{x} dx} [/mm] = [mm] \bruch{1}{2}e^{x} [/mm] für x [mm] \le [/mm] 0 so weit so gut.

beim integrieren der 2. funktion bekomme ich aber

[mm] \integral{\bruch{1}{2}e^{-x}dx} [/mm] = [mm] -\bruch{1}{2}e^{-x} [/mm] für x > 0

wie kommt man den da auf die 1 - [mm] \bruch{1}{2}e^{-x} [/mm] ??

        
Bezug
Laplace Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 06.06.2007
Autor: Zwerglein

Hi, doener,

Du musst ja noch beachten, dass die Gesamtfläche unter dem Graphen gleich 1 sein muss, was wiederum auch bedeutet,
dass der Flächeninhalt links von der y-Achse (x=0) 1/2 und der rechts davon ebenfalls 1/2 ist.
Dein unbestimmtes Integral enthält ja jeweils noch eine Konstante (c), und die musst Du nach obiger Vorgabe bestimmen.
Für x < 0 ist c=0, für x [mm] \ge [/mm] 0 ist c=1

mfG!
Zwerglein

Bezug
        
Bezug
Laplace Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mi 06.06.2007
Autor: luis52

Moin doener,

du musst bedenken, dass fuer $x>0$ gilt [mm] $F(x)=\int_{-\infty}^x f(t)\, [/mm] dt= [mm] \int_{-\infty}^0f(t)\, [/mm] dt + [mm] \int_{0}^x f(t)\, [/mm] dt=1/2+ [mm] \int_{0}^x f(t)\, [/mm] dt$
Dabei ist $f$ die Dichte mit [mm] $f(x)=\bruch{1}{2}e^{-|x|} [/mm] $.

lg

Luis  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]