www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lebesgue-integrierbar
Lebesgue-integrierbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-integrierbar: Integral
Status: (Frage) beantwortet Status 
Datum: 21:44 Mi 29.10.2014
Autor: YuSul

Aufgabe
Sei [mm] $f:\mathbb{R}^n\to\mathbb{C}$ [/mm] Lebesgue-integrierbare Funktion.
Zeigen Sie:

Dann ist auch

[mm] $f^{\sim}:\mathbb{R}^n\times (a,b)\to \mathbb{C}$ [/mm]

[mm] $(x,y)\to [/mm] f(x)$

Lebesgue-integrierbar und es gilt:

[mm] $\int_{\mathbb{R}^n\times (a,b)} f^{\sim}(x,y)\, d(x,y)=(b-a)\int_{\mathbb{R}^n} [/mm] f(x)$

Hi,

ich bräuchte mal wieder etwas hilfe bei dieser Aufgabe, da ich nicht so recht weiß wie ich die Lebesgue-integrierbarkeit von [mm] $f^{\sim}$ [/mm] zeigen kann, bzw. eine geeignete Treppenfunktion wähle.

Da $f$ Lebesgue-integrierbar ist gibt es eine Treppenfunktion [mm] $\phi_k$ [/mm] so, dass

[mm] $\lim_{k\to\infty} ||f-\phi_k||_1=0$ [/mm]

Nun ist die Abbildungsvorschrfit von [mm] $f^{\sim}$ [/mm] ja so, dass [mm] $(x,y)\mapsto [/mm] f(x)$ werden.
Dann kann ich doch einfach die selbe Treppenfunktion wie für f nehmen, oder nicht?

Für den zweiten Teil hatte ich mir folgendes überlegt. Und zwar hatten wir den Satz von Fubini für Treppenfunktionen bewiesen.
Wenn ich also [mm] $f^{\sim}$ [/mm] mittels Treppenfunktion darstelle, so kann ich die Integration nacheinander ausführen.

Es gilt:

[mm] $\int_{\mathbb{R}^n} f(x)\, dx=\lim_{k\to\infty}\int_{\mathbb{R}^n}\phi_k(x)\, [/mm] dx$

Also könnte ich, wenn ich die Treppenfunktion zu [mm] $f^{\sim}$ [/mm] kenne dies so umformen und dann den entsprechenden Satz anwenden.

Über Hilfestellung würde ich mich sehr freuen.

        
Bezug
Lebesgue-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 29.10.2014
Autor: andyv

Hallo



> Hi,
>  
> ich bräuchte mal wieder etwas hilfe bei dieser Aufgabe, da
> ich nicht so recht weiß wie ich die
> Lebesgue-integrierbarkeit von [mm]f^{\sim}[/mm] zeigen kann, bzw.
> eine geeignete Treppenfunktion wähle.
>  
> Da [mm]f[/mm] Lebesgue-integrierbar ist gibt es eine Treppenfunktion
> [mm]\phi_k[/mm] so, dass
>  
> [mm]\lim_{k\to\infty} ||f-\phi_k||_1=0[/mm]
>  
> Nun ist die Abbildungsvorschrfit von [mm]f^{\sim}[/mm] ja so, dass
> [mm](x,y)\mapsto f(x)[/mm] werden.
> Dann kann ich doch einfach die selbe Treppenfunktion wie
> für f nehmen, oder nicht?

Nein, [mm] $\phi_k$ [/mm] sind nur auf [mm] $\IR^n$ [/mm] definiert.

> Für den zweiten Teil hatte ich mir folgendes überlegt.
> Und zwar hatten wir den Satz von Fubini für
> Treppenfunktionen bewiesen.
> Wenn ich also [mm]f^{\sim}[/mm] mittels Treppenfunktion darstelle,
> so kann ich die Integration nacheinander ausführen.
>  
> Es gilt:
>  
> [mm]\int_{\mathbb{R}^n} f(x)\, dx=\lim_{k\to\infty}\int_{\mathbb{R}^n}\phi_k(x)\, dx[/mm]
>  
> Also könnte ich, wenn ich die Treppenfunktion zu [mm]f^{\sim}[/mm]
> kenne dies so umformen und dann den entsprechenden Satz
> anwenden.

Genau, das folgt aus der Definition [mm] $\int [/mm] f$, [mm] $\int f^{\sim}$, [/mm] sowie dem Satz von Fubini für Treppenfunktionen.

>  
> Über Hilfestellung würde ich mich sehr freuen.

Liebe Grüße

Bezug
                
Bezug
Lebesgue-integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 29.10.2014
Autor: YuSul

Ich hatte mir überlegt, dass ich die Treppenfunktion [mm] $\phi_k$ [/mm] auch einfach mit

[mm] $\phi_k\times(a,b)$ [/mm] erweitern könnte.

Ich weiß leider nicht wie ich mir eine geeignete Treppenfunktion konstruieren könnte.

Bezug
                        
Bezug
Lebesgue-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mi 29.10.2014
Autor: andyv

Definiere Treppenfunktionen [mm] $\phi_k^{\sim}$ [/mm] analog zu [mm] $f^{\sim}$. [/mm]
Gilt [mm] $\|f^{\sim}-\phi_k^{\sim}\|_1 \to [/mm] 0$?

Liebe Grüße

Bezug
                                
Bezug
Lebesgue-integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 29.10.2014
Autor: YuSul

Wenn ich

[mm] $\phi_k^{\sim}$ [/mm] auch so definiere wie [mm] $f^{\sim}$, [/mm] dann ist

[mm] $\phi_k^{\sim}:\mathbb{R}^n\times (a,b)\to \mathbb{C}$ [/mm]

[mm] $(x,y)\mapsto \phi_k$ [/mm]

bezüglich der [mm] $L_1$-Halbnorm [/mm] mit

[mm] $\lim_{k\to\infty} ||f^{\sim}-\phi_k^{\sim}||_1=0$ [/mm]

Weil im Grunde nichts anderes passiert als bei

[mm] $\lim_{k\to\infty} ||f-\phi_k||_1=0$ [/mm]

und das das gilt weiß ich ja.
Die Funktionsabbildungen für [mm] $f^{\sim}$ [/mm] und [mm] $\phi_{k}^{\sim}$ [/mm] sind ja gerade so definiert.

Bezug
                                        
Bezug
Lebesgue-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 02:11 Do 30.10.2014
Autor: andyv

Du solltest schon zeigen, dass $ [mm] \lim_{k\to\infty} ||f^{\sim}-\phi_k^{\sim}||_1=0 [/mm] $ gilt, auch wenn das nicht besonders schwer ist.

Schau dir dazu die Def. der [mm] $\|* \|_1$-Halbnorm [/mm] an.
Es gilt nicht [mm] $||f^{\sim}-\phi_k^{\sim}||_1= ||f-\phi_k||_1 [/mm] $ !

Liebe Grüße

Bezug
                                                
Bezug
Lebesgue-integrierbar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:13 Do 30.10.2014
Autor: YuSul

Hi, ich hätte nochmal eine Frage zu dieser Aufgabe allgemein. Ich betrachte ja

[mm] $\mathbb{R}^n\times [/mm] (a,b)$ im Beispiel des zweidimensionalen Raumes würde dies doch letztendlich einen Quader mit Kantenlänge $b-a$ bedeuten, also den [mm] $\mathbb{R}^2$ [/mm] um eine weitere Dimension erweitern.

Wenn ich vorher nur eine Fläche hatte, bekomme ich durch das (a,b) nun einen Quader.

Nun zur [mm] $L_1$-Halbnorm $||f||_1=inf\{I(\phi)|\phi\text{ist Hüllreihe zu} f\}\in[0,\infty]$ [/mm]

definiert.

Wie ich dies anhand der Definition nun aber zeige, da steige ich nicht hinter.
Die Definition wirkt so "wild". Ich wüsste gar nicht wie ich entsprechende Quader konstruieren könnte. Aber ich denke auch, dass das gar nicht notwendig ist...

Bezug
                                                        
Bezug
Lebesgue-integrierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Do 30.10.2014
Autor: YuSul

Hat hier noch jemand einen Tipp wie ich zeigen kann, dass

[mm] $\lim_{k\to\infty} ||f^{\sim}-\phi_k^{\sim}||_1=0$ [/mm]

Ich weiß nicht wie ich dies mit der Definition, der Halbnorm zeigen kann.

Bezug
                                                        
Bezug
Lebesgue-integrierbar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 01.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]