Lebesque-Nullmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:18 Mi 16.11.2011 | Autor: | m0ppel |
Aufgabe | Wir betrachten [mm] \IR [/mm] mit dem Lebesgue-Maß [mm] \mu. [/mm] Nullmengen seien im Folgenden [mm] \mu-Nullmengen. [/mm]
Beweisen oder widerlegen Sie:
(i) Eine abzählbare Vereinigung von Nullmengen ist eine Nullmenge.
(ii) Eine beliebige Vereinigung von Nullmengen ist eine Nullmenge.
(iii) Eine nichtleere offene Menge ist nie eine Nullmenge.
(iv) Eine nichtleere abgeschlossene Teilmenge ist nie eine Nullmenge. |
Guten Abend,
Ich sitzte heute schon eine Weile an den Analysis Aufgaben und bin jetzt endlich bei der letzten angekommen.
Den ersten Teil der Aufgabe habe ich erledigt.
Aber mir fällt einfach kein Gegenbeispiel für (ii) ein.
Wäre lieb, wenn mir da einer helfen könnte.
Danke schon mal und
Liebe Grüße m0ppel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:25 Mi 16.11.2011 | Autor: | Micha |
Hallo m0ppel!
Als Gegenbeispiel für ii) kannst du ja mal ein Intervall wie z.B. (0,1) betrachten. Das Intervall ist die Vereinigung von allen einpunktigen Teilmengen {x} für 0<x<1.
Gruß Micha
|
|
|
|