www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Legende Polynom
Legende Polynom < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legende Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 01.11.2007
Autor: Phecda

Hi ich muss die basis
[mm] p_{0}=1 [/mm]
[mm] p_{1}=x [/mm]
[mm] p_{2}=x^2 [/mm]
[mm] p_{3}=x^3 [/mm]
[mm] p_{4}=x^4 [/mm]
orthonormieren.
In einem buch wurde das gemacht und es kam raus
[mm] b_{0}=sqrt(1/2) [/mm]
[mm] b_{1}=sqrt(3/2)x [/mm]
[mm] b_{2}=sqrt(5)/(sqrt(2)*2)*(3x^2-1)... [/mm]

ich hätte hab gedacht, dass die orthonormierte Basis die Legendre Polynome sind:
http://de.wikipedia.org/wiki/Legendre-Polynom
wie in wikipedia unten schon aufgelistet!

Kann mir jmd der unterschied erklären bzw. was sind LegendrePolynome? gibt es ein zusammenhang zur schmidt'schen OrthoNormierung

vieln dank :)
mfg

        
Bezug
Legende Polynom: Welches Skalarprodukt?
Status: (Antwort) fertig Status 
Datum: 18:08 Do 01.11.2007
Autor: rainerS

Hallo Phecda,

> Hi ich muss die basis
>  [mm]p_{0}=1[/mm]
>  [mm]p_{1}=x[/mm]
>  [mm]p_{2}=x^2[/mm]
>  [mm]p_{3}=x^3[/mm]
>  [mm]p_{4}=x^4[/mm]
>  orthonormieren.
>  In einem buch wurde das gemacht und es kam raus
>  [mm]b_{0}=sqrt(1/2)[/mm]
>  [mm]b_{1}=sqrt(3/2)x[/mm]
>  [mm]b_{2}=sqrt(5)/(sqrt(2)*2)*(3x^2-1)...[/mm]

Wie ist in dem Buch das Skalarprodukt definiert? Vermutlich

[mm] = \integral_{-1}^{+1} p(x)*q(x) dx [/mm].


> ich hätte hab gedacht, dass die orthonormierte Basis die
> Legendre Polynome sind:
>  http://de.wikipedia.org/wiki/Legendre-Polynom

Die Polynome stimmen bis auf einen Vorfaktor mit den Legendre-Polynomen überein.
  

> Kann mir jmd der unterschied erklären bzw. was sind
> LegendrePolynome? gibt es ein zusammenhang zur
> schmidt'schen OrthoNormierung

Ja.

Der Begriff orthonormal bezieht sich immer auf die Definition des Skalarprodukts. Du wendest das Schmidtsche Orthonormierungsverfahren auf deine Basispolynome, nimmst dabei das obige Skalarprodukt.

Erster Schritt: [mm]b_0 = \bruch{1}{\sqrt{}} p_0 [/mm].

Zweiter Schritt: [mm]b_1 = \bruch{1}{\sqrt{\dots}} (p_1 - b_0)[/mm].

Der Bruch entsteht jedesmal durch die Normierungsbedingung [mm] = 1[/mm].
Usw.

Die Legendrepolynome [mm]L_n[/mm] entstehen aus deiner Basis genauso, aber mit einer anderen Normierungsvorschrift: sie sind orthogonal, aber nicht orthonormal, sieh []hier:
[mm] = \bruch{2}{2n+1}[/mm].

Wenn du genau hinschaust, siehst du, dass deine Polynome gerade [mm]b_n = \sqrt{\bruch{2n+1}{2}} L_n[/mm] sind, also durch Noermierung auf Länge 1 entstehen.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]