www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lin.Abb.und Untervektorräume 2
Lin.Abb.und Untervektorräume 2 < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin.Abb.und Untervektorräume 2: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 16:53 Mi 02.01.2008
Autor: rainman_do

Aufgabe
Es sei V ein endlich-dimensionaler Vektorraum über einem Körper K und es seien U und W Untervektorräume von V. Mittels komponentenweiser Operation wird V [mm] \times [/mm] V ebenfalls zu einem K-Vektorraum. Wir definieren Abbildungen [mm] \varphi [/mm] : V [mm] \to [/mm] V [mm] \times [/mm] V, v [mm] \mapsto [/mm] (v,0), und [mm] \delta [/mm] : V [mm] \to [/mm] V [mm] \times [/mm] V, v [mm] \mapsto [/mm] (v,v), sowei X := [mm] \varphi(U) [/mm] + [mm] \delta(W). [/mm]

(a) Zeigen Sie, dass [mm] \varphi [/mm] und [mm] \delta [/mm] lineare Abbildungen über K sind.
(b) Folgern Sie, dass die Menge X ein Untervektorraum von V [mm] \times [/mm] V ist.
(c) Zeigen Sie, dass die Abildung L: X [mm] \to [/mm] V, [mm] (x_1,x_2) \mapsto x_1 [/mm] , linear ist, und bestimmen Sie Kern L und Bild L.

Hallo, meine Fragen nehmen mal wieder kein Ende ;) Also bei der (a) bin ich recht zuversichtlich:

Additivität von [mm] \varphi [/mm]
[mm] \varphi(v+w) [/mm] = (v+w,0) = (v,0) +(w,0) = [mm] \varphi(v,0) [/mm] + [mm] \varphi(w,0) [/mm] mit v,w [mm] \in [/mm] V

Homogenität von [mm] \varphi [/mm]
[mm] \varphi(\lambda [/mm] v) = [mm] (\lambda [/mm] v,0) = [mm] \lambda [/mm] (v,0) = [mm] \lambda \varphi(v) [/mm] mit v [mm] \in [/mm] V, [mm] \lambda \in [/mm] K

Für [mm] \delta [/mm] analog

(b) Wende das UVR-Kriterium an:
1. X [mm] \not= \emptyset [/mm]
Da U und W Untervektorräume sind, gilt 0 [mm] \in [/mm] U und 0 [mm] \in [/mm] W, zudem gilt [mm] \varphi(0) [/mm] + [mm] \delta(0) [/mm] = (0,0) + (0,0) = (0,0) [mm] \in [/mm] X
2. Abgeschlossenheit bzgl. Addition
Tja hier komm ich leider nicht wirklich weiter, ich hab angefangen mit:
Sei [mm] a=(a_1,a_2) [/mm] und [mm] b=(b_1,b_2) \in [/mm] X, dann gilt [mm] a+b=(a_1,a_2)+(b_1,b_2) [/mm]
hier war ich mir aber dann nicht sicher, ob ich das einfach komponentenweise addieren darf oder ob ich da noch was vorher machen muss, hier wäre ich für einen Ansatz sehr dankbar.
3. Abgeschlossenheit bzgl. skalarer Mult.
Hier ist es das gleiche wie bei 2. auch hier bräuchte ich einen kleinen Ansatz

(c) Zu zeigen, dass L linear ist, ist kein Problem, allerdings hab ich Probleme bei der Berechnung von Kern und Bild. Also meine erste Vermutung war, dass L injektiv ist (dann wär ja der Kern {0}), denn aus [mm] L(x_1,x_2)=L(x_{1}',x_{2}') [/mm] folgt, dass [mm] x_1=x_{1}' [/mm] gilt, allerdings wird [mm] x_2 [/mm] ja quasi vernachlässigt, weswegen ich mir da äußerst unsicher bin. Ein kleiner Ansatz wär super.

Vielen Dank im Voraus.

        
Bezug
Lin.Abb.und Untervektorräume 2: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Mi 02.01.2008
Autor: Loddar

Hallo rainman_do!


Bitte keine Doppelposts hier einstellen. Du hast diese Frage gerade eben schon hier eingestellt.


Gruß
Loddar


Bezug
                
Bezug
Lin.Abb.und Untervektorräume 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mi 02.01.2008
Autor: rainman_do

oh sorry, hab ich wohl zweimal draufgeklickt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]