www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Lin. Abbildung von R² nach R³
Lin. Abbildung von R² nach R³ < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abbildung von R² nach R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 27.11.2014
Autor: mac257

Aufgabe
Im [mm] $\IR^{2}$ [/mm] seien drei Vektoren [mm] $v_{1},v_{2},v_{3}$ [/mm] gegeben, im [mm] $\IR^{3}$ [/mm] seien [mm] $e_{1},e_{2},e_{3}$ [/mm] die Einheitsvektoren. Wieso gibt es keine lineare Abbildung [mm] $F:\IR^{2}\rightarrow\IR^{3}$, [/mm] die für alle $i=1,2,3$ die Bedingung [mm] $F(v_{i})=e_{i}$ [/mm] erfüllt?

Hallo,
denke diese Frage ist ganz schnell beantwortet, bin mir nur nicht ganz sicher wo ich ansetzen soll. Geht es hier darum, dass man nicht alle drei Vektoren [mm] $v_{i}$ [/mm] "gleichzeitig" abbilden kann? Denn es gilt doch
[mm] \vektor{v_{1} \\ v_{2}}\mapsto\vektor{e_{1} \\ e_{2} \\ e_{3}} [/mm] und somit wäre für diesen Fall jetzt [mm] $v_{3}$ [/mm] nicht berücksichtigt, oder?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lin. Abbildung von R² nach R³: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 27.11.2014
Autor: fred97


> Im [mm]\IR^{2}[/mm] seien drei Vektoren [mm]v_{1},v_{2},v_{3}[/mm] gegeben,
> im [mm]\IR^{3}[/mm] seien [mm]e_{1},e_{2},e_{3}[/mm] die Einheitsvektoren.
> Wieso gibt es keine lineare Abbildung
> [mm]F:\IR^{2}\rightarrow\IR^{3}[/mm], die für alle [mm]i=1,2,3[/mm] die
> Bedingung [mm]F(v_{i})=e_{i}[/mm] erfüllt?
>  Hallo,
>  denke diese Frage ist ganz schnell beantwortet, bin mir
> nur nicht ganz sicher wo ich ansetzen soll. Geht es hier
> darum, dass man nicht alle drei Vektoren [mm]v_{i}[/mm]
> "gleichzeitig" abbilden kann? Denn es gilt doch
>  [mm]\vektor{v_{1} \\ v_{2}}\mapsto\vektor{e_{1} \\ e_{2} \\ e_{3}}[/mm]

Hä ? Die [mm] v_i [/mm] und [mm] e_i [/mm] sind vektoren !



> und somit wäre für diesen Fall jetzt [mm]v_{3}[/mm] nicht
> berücksichtigt, oder?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Nimm mal an, es gäbe eine solche lin. Abbildung F.

Die Vektoren  $ [mm] v_{1},v_{2},v_{3} [/mm] $  sind linear abhängig, also gibt es reelle Zahlen  [mm] t_1,t_2 [/mm] und [mm] t_3, [/mm] die nicht alle =0 sind, mit

  (*) [mm] 0=t_1v_1+t_2v_2+t_3v_3. [/mm]

So, nun lasse F auf (*) los. Dann bekommst Du einen Widerspruch. Welchen ?

FRED




Bezug
                
Bezug
Lin. Abbildung von R² nach R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Do 27.11.2014
Autor: mac257


> > Denn es gilt doch
>  >  [mm]\vektor{v_{1} \\ v_{2}}\mapsto\vektor{e_{1} \\ e_{2} \\ e_{3}}[/mm]
>
> Hä ? Die [mm]v_i[/mm] und [mm]e_i[/mm] sind vektoren !

Ups...peinlich. Da habe ich was durcheinander bekommen, wollte nur die Abbildung beschreiben und nicht die Vektoren zu Elementen mutieren lassen.

Also ich leg mal los:

Seien [mm] $v_{1},v_{2},v_{3}$ [/mm] linear abhängig. Dann gilt: [mm] $\exists t_{1},t_{2},t_{3}\in \IR$ [/mm] für [mm] $t_{1}v_{1}+t_{2}v_{2}+t_{3}v_{3}=0$, [/mm] nicht alle [mm] $t_{i}=0$. [/mm]
Nach [mm] $F(v_{i})=e_{i}$ [/mm] folgt: [mm] $t_{1}e_{1}+t_{2}e_{2}+t_{3}e_{3}=0$ [/mm]
Da [mm] $e_{i}$ [/mm] die Einheitsvektoren darstellt, ergibt sich:
[mm] $t_{1}\vektor{1\\0\\0}+t_{2}\vektor{0\\1\\0}+t_{3}\vektor{0\\0\\1}=0$ [/mm]
Nach Lösung ergibt sich für alle [mm] $t_{i}=0$, [/mm] was im Widerspruch zur Annahme steht (nicht alle [mm] $t_{i}=0$). [/mm]

Korrekt?

Bezug
                        
Bezug
Lin. Abbildung von R² nach R³: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Do 27.11.2014
Autor: fred97


> > > Denn es gilt doch
>  >  >  [mm]\vektor{v_{1} \\ v_{2}}\mapsto\vektor{e_{1} \\ e_{2} \\ e_{3}}[/mm]
> >
> > Hä ? Die [mm]v_i[/mm] und [mm]e_i[/mm] sind vektoren !
>  
> Ups...peinlich. Da habe ich was durcheinander bekommen,
> wollte nur die Abbildung beschreiben und nicht die Vektoren
> zu Elementen mutieren lassen.
>  
> Also ich leg mal los:
>  
> Seien [mm]v_{1},v_{2},v_{3}[/mm] linear abhängig. Dann gilt:
> [mm]\exists t_{1},t_{2},t_{3}\in \IR[/mm] für
> [mm]t_{1}v_{1}+t_{2}v_{2}+t_{3}v_{3}=0[/mm], nicht alle [mm]t_{i}=0[/mm].
>  Nach [mm]F(v_{i})=e_{i}[/mm] folgt:
> [mm]t_{1}e_{1}+t_{2}e_{2}+t_{3}e_{3}=0[/mm]
>  Da [mm]e_{i}[/mm] die Einheitsvektoren darstellt, ergibt sich:
>  
> [mm]t_{1}\vektor{1\\0\\0}+t_{2}\vektor{0\\1\\0}+t_{3}\vektor{0\\0\\1}=0[/mm]
>  Nach Lösung ergibt sich für alle [mm]t_{i}=0[/mm], was im
> Widerspruch zur Annahme steht (nicht alle [mm]t_{i}=0[/mm]).
>  
> Korrekt?

Ja.

FRED


Bezug
                                
Bezug
Lin. Abbildung von R² nach R³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Do 27.11.2014
Autor: mac257

Super, so ein Denkanstoß hat mir wieder gefehlt! Besten Dank, bin begeistert!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]