Linare Abbildungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:26 So 18.10.2009 | Autor: | Pacapear |
Hallo zusammen!
Ich habe hier einen Satz, der mir sagt, dass die Menge $Hom(V,K) [mm] \subset [/mm] Abb(V,K)$ aller linearen Abbildungen von V nach K ein Unterraum und damit selbst wieder ein Vektorraum ist.
Ich weiß jetzt nicht, wie ich das für mich überprüfen kann.
Also ich weiß mittlerweile, wie ich Abbildungen in einem Vektorraum addiere und skalarmultipliziere, nämlich [mm] $(f_1,f_2) \mapsto f_1 \oplus f_2$ [/mm] mit [mm] $(f_1 \oplus f_2)(x):=f_1(x)+f_2(x)$ [/mm] und $(k,f) [mm] \mapsto [/mm] k [mm] \odot [/mm] f$ mit $(k [mm] \odot [/mm] f)(x):=k*f(x)$.
Das gilt ja genauso für lineare Abbildungen, da sie ja eine Teilmenge davon sind.
Aber voher weiß ich, dass die Summe zweier linearer Abbildungen wieder eine lineare Abbildung ist und beim Skalarprodukt genauso?
Weil ich muss ja prüfen:
1) $f [mm] \in [/mm] Hom(V,K), g [mm] \in [/mm] Hom(V,K) [mm] \Rightarrow [/mm] f [mm] \oplus [/mm] g [mm] \in [/mm] Hom(V,K)$
1) $f [mm] \in [/mm] Hom(V,K), k [mm] \in [/mm] K [mm] \Rightarrow [/mm] k [mm] \odot [/mm] f [mm] \in [/mm] Hom(V,K)$
Aber ich weiß nicht, wie ich das zeigen kann, dass $f [mm] \oplus [/mm] g$ und $k [mm] \odot [/mm] f$ auch wirklich wieder in $Hom(V,K)$ liegen.
Kann mir jemand weiterhelfen?
LG, Nadine
|
|
|
|
> Weil ich muss ja prüfen:
> 1) [mm]f \in Hom(V,K), g \in Hom(V,K) \Rightarrow f \oplus g \in Hom(V,K)[/mm]
>
> 1) [mm]f \in Hom(V,K), k \in K \Rightarrow k \odot f \in Hom(V,K)[/mm]
>
> Aber ich weiß nicht, wie ich das zeigen kann, dass [mm]f \oplus g[/mm]
> und [mm]k \odot f[/mm] auch wirklich wieder in [mm]Hom(V,K)[/mm] liegen.
Hallo,
woran erkennst Du, ob eine Abbildung linear ist? Daran, daß sie die beiden Linearitätsbedingungen erfüllt.
Du mußt also prüfen, ob, sofern f und g Homomorphismen sind,
auch für f [mm] \oplus [/mm] g gilt:
für alle x,y [mm] \in [/mm] V ist (f [mm] \oplus [/mm] g)(x+y)=(f [mm] \oplus [/mm] g)(x) + (f [mm] \oplus [/mm] g)(y),
für k [mm] \odot [/mm] f analog.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:28 So 18.10.2009 | Autor: | Pacapear |
Hallo Angela!
> Du mußt also prüfen, ob, sofern f und g Homomorphismen
> sind,
>
> auch für f [mm]\oplus[/mm] g gilt:
>
> für alle x,y [mm]\in[/mm] V ist (f [mm]\oplus[/mm] g)(x+y)=(f [mm]\oplus[/mm] g)(x)
> + (f [mm]\oplus[/mm] g)(y),
>
> für k [mm]\odot[/mm] f analog.
Dann versuch ich das mal:
Also damit $f [mm] \oplus [/mm] g [mm] \in [/mm] Hom(V,K)$ muss gelten:
1) $(f [mm] \oplus [/mm] g)(x+y)=(f [mm] \oplus [/mm] g)(x)+(f [mm] \oplus [/mm] g)(y)$
2) $(f [mm] \oplus g)(\lambda*x)=\lambda*(f \oplus [/mm] g)(x)$
Und damit $k [mm] \odot [/mm] f [mm] \in [/mm] Hom(V,K)$ muss gelten:
3) [mm] $(\lambda \odot [/mm] f)(x+y)=(k [mm] \odot [/mm] f)(x)+(k [mm] \odot [/mm] f)(y)$
4) [mm] $(\lambda \odot f)(k*x)=k*(\lambda \odot [/mm] f)(x)$
Beweis für 1)
$(f [mm] \oplus [/mm] g)(x+y)=f(x+y)+g(x+y)$ nach Defintion der Summe $=f(x)+f(y)+g(x)+g(y)$ da f und g linear $=f(x)+g(x)+f(y)+g(y)=(f [mm] \oplus [/mm] g)(x)+(f [mm] \oplus [/mm] g)(y)$
Beweis für 2)
$(f [mm] \oplus g)(\lambda*x)=f(\lambda*x)+g(\lambda*x)$ [/mm] nach Defintion der [mm] Summe$=\lambda*f(x)+\lambda*g(x)$ [/mm] da f und g linear [mm] $=\lambda*(f(x)+g(x))=\lambda*(f \oplus g)(\lambda*x)$
[/mm]
Beweis für 3)
[mm] $(\lambda \odot f)(x+y)=\lambda [/mm] * f(x+y)$ nach Defintion der Skalarmultiplikation [mm] $=\lambda [/mm] * (f(x)+f(y)$ da f linear [mm] $=\lambda [/mm] * f(x) + [mm] \lambda [/mm] * f(y) = [mm] (\lambda \odot [/mm] f)(x) + [mm] (\lambda \odot [/mm] f)(y)$
Beweis für 4)
[mm] $(\lambda \odot f)(k*x)=\lambda [/mm] * f(k*x)$ nach Defintion der Skalarmultiplikation [mm] $=k*\lambda [/mm] * f(x)$ da f linear [mm] $=k*(\lambda \odot [/mm] f)(x)$
Ich bin mir jetzt überhaupt nicht sicher, ob ich immer richtig zwischen [mm] \oplus [/mm] und $+$ und zwischen [mm] \odot [/mm] und $*$ unterschieden habe...
Zwischen x und y müsste ja eigentlich auch immer [mm] \oplus [/mm] statt $+$ stehen, weil x und y ja Elemente aus dem Vektorraum V sind...
Und in Büchern steht statt $Hom(V,K)$ immer allgemein $Hom(V,W)$ mit V und W beides Vektorräume, dann müsste ja [mm] $(f_1 \oplus f_2)(x):=f_1(x)+f_2(x)$ [/mm] (normales Plus, weil [mm] f_1(x) [/mm] und [mm] f_2(x) [/mm] beides Elemente/Funktionswerte aus Körper K) jetzt eigentlich als [mm] $(f_1 \oplus f_2)(x):=f_1(x) \oplus f_2(x)$ [/mm] geschrieben werden, weil ja jetzt die Funktionswerte [mm] f_1(x) [/mm] und [mm] f_2(x) [/mm] auch Elemente eines Vektorraums sind, nämlich von W...
Das ist alles irgendwie total wirr gerade... :-(
Was macht man da am besten, um keine Fehler zu machen?
LG, Nadine
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 05:17 Mo 19.10.2009 | Autor: | felixf |
Hallo Nadine!
> > Du mußt also prüfen, ob, sofern f und g Homomorphismen
> > sind,
> >
> > auch für f [mm]\oplus[/mm] g gilt:
> >
> > für alle x,y [mm]\in[/mm] V ist (f [mm]\oplus[/mm] g)(x+y)=(f [mm]\oplus[/mm] g)(x)
> > + (f [mm]\oplus[/mm] g)(y),
> >
> > für k [mm]\odot[/mm] f analog.
>
> Dann versuch ich das mal:
>
> Also damit [mm]f \oplus g \in Hom(V,K)[/mm] muss
...fuer alle $x, y [mm] \in [/mm] V$ und [mm] $\lambda \in [/mm] K$...
> gelten:
> 1) [mm](f \oplus g)(x+y)=(f \oplus g)(x)+(f \oplus g)(y)[/mm]
> 2)
> [mm](f \oplus g)(\lambda*x)=\lambda*(f \oplus g)(x)[/mm]
>
> Und damit [mm]k \odot f \in Hom(V,K)[/mm] muss
...fuer alle $x, y [mm] \in [/mm] V$ und [mm] $\lambda \in [/mm] K$...
> gelten:
> 3) [mm](\lambda \odot f)(x+y)=(k \odot f)(x)+(k \odot f)(y)[/mm]
>
> 4) [mm](\lambda \odot f)(k*x)=k*(\lambda \odot f)(x)[/mm]
>
>
>
> Beweis für 1)
>
> [mm](f \oplus g)(x+y)=f(x+y)+g(x+y)[/mm] nach Defintion der Summe
> [mm]=f(x)+f(y)+g(x)+g(y)[/mm] da f und g linear
> [mm]=f(x)+g(x)+f(y)+g(y)=(f \oplus g)(x)+(f \oplus g)(y)[/mm]
> Beweis für 2)
>
> [mm](f \oplus g)(\lambda*x)=f(\lambda*x)+g(\lambda*x)[/mm] nach
> Defintion der Summe[mm]=\lambda*f(x)+\lambda*g(x)[/mm] da f und g
> linear [mm]=\lambda*(f(x)+g(x))=\lambda*(f \oplus g)(\lambda*x)[/mm]
> Beweis für 3)
>
> [mm](\lambda \odot f)(x+y)=\lambda * f(x+y)[/mm] nach Defintion der
> Skalarmultiplikation [mm]=\lambda * (f(x)+f(y)[/mm] da f linear
> [mm]=\lambda * f(x) + \lambda * f(y) = (\lambda \odot f)(x) + (\lambda \odot f)(y)[/mm]
> Beweis für 4)
>
> [mm](\lambda \odot f)(k*x)=\lambda * f(k*x)[/mm] nach Defintion der
> Skalarmultiplikation [mm]=k*\lambda * f(x)[/mm] da f linear
> [mm]=k*(\lambda \odot f)(x)[/mm]
> Ich bin mir jetzt überhaupt nicht sicher, ob ich immer
> richtig zwischen [mm]\oplus[/mm] und [mm]+[/mm] und zwischen [mm]\odot[/mm] und [mm]*[/mm]
> unterschieden habe...
Hast du.
> Zwischen x und y müsste ja eigentlich auch immer [mm]\oplus[/mm]
> statt [mm]+[/mm] stehen, weil x und y ja Elemente aus dem Vektorraum
> V sind...
Dann muss da aber nicht [mm] $\oplus$ [/mm] stehen, da die Addition des Vektorraums $V$ mit $+$ bezeichnet wird. Nur die Addition des Vektorraums $Abb(V, K)$ wird hier mit [mm] $\oplus$ [/mm] bezeichnet.
> Und in Büchern steht statt [mm]Hom(V,K)[/mm] immer allgemein
> [mm]Hom(V,W)[/mm] mit V und W beides Vektorräume, dann müsste ja
> [mm](f_1 \oplus f_2)(x):=f_1(x)+f_2(x)[/mm] (normales Plus, weil
> [mm]f_1(x)[/mm] und [mm]f_2(x)[/mm] beides Elemente/Funktionswerte aus
> Körper K) jetzt eigentlich als [mm](f_1 \oplus f_2)(x):=f_1(x) \oplus f_2(x)[/mm]
> geschrieben werden, weil ja jetzt die Funktionswerte [mm]f_1(x)[/mm]
> und [mm]f_2(x)[/mm] auch Elemente eines Vektorraums sind, nämlich
> von W...
Nein, da wird die Addition ebenfalls ueberall als $+$ geschrieben: solange du Elemente aus $V$ oder $W$ addierst, verwendest du $+$. Erst wenn du Elemente aus $Hom(V, W)$ addierst, verwendest du [mm] $\oplus$. [/mm] (Bzw. spaeter auch $+$, wenn man akzeptiert hat das es so zu einem Vektorraum wurde und man keine Angst mehr hat da etwas zu verwechseln.)
> Das ist alles irgendwie total wirr gerade... :-(
>
> Was macht man da am besten, um keine Fehler zu machen?
Immer schauen, was du da eigentlich addierst. Bei $f$ und $g$ addierst du Elemente aus $Hom(V, K)$, also nimmst du [mm] $\oplus$. [/mm] Bei $x$ und $y$ addierst du Elemente aus $V$, also nimmst du $+$. Bei $f(x)$ und $f(y)$ addierst du Elemente aus $K$ (oder aus $W$), also nimmst du ebenfalls $+$.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:32 Mo 19.10.2009 | Autor: | Pacapear |
Vielen Dank für eure Hilfe!
LG, Nadine
|
|
|
|