www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Lineare Abb. im Skalarprodukt
Lineare Abb. im Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abb. im Skalarprodukt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 12.06.2008
Autor: Rumba

Aufgabe
Seien (H, <.|.>) ein [mm] \IC [/mm] Hilbertraum und A [mm] \in [/mm] L(H,H) eine stetige und lineare Abbilung. Zeigen Sie: Aus [mm] \forall [/mm] x [mm] \in [/mm] H <Ax|x>=0  folgt A=0 und verwenden Sie dabei die Polarisationsformel (s ist Sesquilinearform s(x,y) = <x|y>):
s(x|y) = [mm] \bruch{1}{4}\summe_{k=1}^{4} i^{k} s(x+i^{k}y,x+i^{k}y) [/mm]

Ist doch richtig, dass A=0 bedeutet, dass diese Abblidung alle x auf Null abbildet, oder?
Ich finde keine Möglichkeit die Polarisationsformel für diesen Beweis zu verwenden, da ich ja aus einem Skalarprodukt das A auch nicht rausziehen kann.
Es wäre toll, wenn jemand mir helfen kann. Vielen Dank schonmal.







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Abb. im Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Fr 13.06.2008
Autor: fred97

Berechne

<Ax|y>

mit der Polarisationsformel. Wegen Deiner Vor. erhälst Du

<Ax|y> = 0 für jedesx und jedes y in H.

Berechne dann ||Ax||² für x in H. was erhälst Du ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]