Lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir fassen in dieser Aufgabe den Graphen von f [mm] \in L(K^{rx1},K^{(n-r)x1}),0 \le [/mm] r [mm] \le [/mm] n, als Teilmenge von [mm] K^{nx1} [/mm] auf, indem wir für [mm] f((x_{1},x_{2},...,x_{r})^{T}) [/mm] = [mm] (y_{1}, y_{2}, [/mm] ..., [mm] y_{n-r})^{T} [/mm] zwischen dem Paar [mm] ((x_{1}, x_{2},...,x_{r})^{T}, f(x_{1}, x_{2},...,x_{r})^{T}) [/mm] und der Spalte [mm] (x_{1},x_{2},..,x_{r},y_{1},y_{2},..,y_{n-r})^{T} [/mm] nicht unterscheiden. Zeige:
(a) Für alle f [mm] \in L(K^{rx1},K^{(n-r)x1}) [/mm] ist der Graph von f ein r-dimensionaler Unterraum von [mm] K^{nx1}.
[/mm]
(b) Jeder r-dimensionale Unterraum von [mm] K^{nx1} [/mm] ist - abgesehen von der Reihenfolge der Koordinaten - der Graph einer linearen Abbildung f [mm] \in L(K^{rx1},K^{(n-r)x1}).
[/mm]
Bemerkung: Es ist üblich, aber keineswegs zwingend, [mm] x_{1},x_{2},..,x_{r} [/mm] an den Anfang und [mm] y_{1},y_{2},..,y_{n-r} [/mm] an das Ende der Spaltenvektoren zu setzen. Deshalb ist in (b) die Einschränkung hinsichtlich der Reihenfolge der Koordinaten notwendig. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo erstmals!
Diese Frage beschäftigt mich jetzt schon seit 2 Stunden, aber mir fehlt leider nichts ein, wie ich diese Aufgaben lösen könnte. Ich will keine Lösung von euch, sondern einen Hinweis, wie ich diese Aufgabe meistern kann.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:28 Di 15.05.2018 | Autor: | hippias |
Mache Dir klar: wenn [mm] $B\subseteq K^{r\times 1}$ [/mm] linear unabhängig ist, dann ist [mm] $\{(b,f(b))\vert b\in B\}$ [/mm] eine linear unabhängige Menge von [mm] $K^{n\times 1}$ [/mm] (im Sinne der vereinbarten Identifikation).
Damit erhälst Du einen Ansatz, um die Behauptung zu zeigen.
|
|
|
|