Lineare Abhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:22 Do 16.11.2006 | Autor: | feku |
Aufgabe | Es seien [mm] \vec{a},\vec{b},\vec{c} [/mm] drei linear unabhängige Vektoren. Untersuchen Sie, ob die Vektoren [mm] \vec{a}+2\vec{b}-\vec{c},3\vec{b}-\vec{c},\vec{c} [/mm] linear abhängig oder unabhängig sind. |
Ich hätte hier eine Frage zu dem Lösungsweg. Damit Vektoren linear abhängig sind, muss ja gelten: [mm] r(\vec{a}+2\vec{b}-\vec{c})+s(3\vec{b}-\vec{c})+t\vec{c}=0 [/mm] wobei nicht r, s und t gleichzeitig 0 sein dürfen. Genügt es, wenn ich drei linear unabhängige Vektoren erfinde und dann prüfe, ob obige Gleichung gilt, oder muss man diese Aufgabe allgemein lösen? Denn wenn ich letzteres versuche, erhalte ich nur eine lange und meiner Ansicht nach nichts sagende Gleichung.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:36 Do 16.11.2006 | Autor: | DaMenge |
Hi,
nein - du musst es schon allgemein machen!
> [mm]r(\vec{a}+2\vec{b}-\vec{c})+s(3\vec{b}-\vec{c})+t\vec{c}=0[/mm]
der ansatz ist richtig und zu zeigen ist, dass daraus folgt : r=s=t=0 !
richtig zusammengefasst ergibt das:
[mm] $r*\vec{a}+(2r+3s)*\vec{b}+(t-r-s)*\vec{c}=0$
[/mm]
und weil die Vektoren a, b und c linear unabhängig sind, FOLGT schon, dass die drei Koeffizienten =0 sind !
Kannst du damit zeigen, dass r=s=t=0 gilt?
viele Grüße
DaMenge
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Fr 17.11.2006 | Autor: | feku |
Hi DaMenge, erst einmal danke für die schnelle Antwort! Um zu zeigen, dass drei Vektoren linear unabhängig sind muss man zeigen, dass die drei Koeffizienten 0 sind, das ist mir so weit klar. Wenn in dieser Gleichung $ [mm] r\cdot{}\vec{a}+(2r+3s)\cdot{}\vec{b}+(t-r-s)\cdot{}\vec{c}=0 [/mm] $ die Koeffizienten der Vektoren 0 sind (mit r=s=t=0), dann folgt daraus 0=0 und die Gleichung ist erfüllt. Das würde dann heißen, dass die zu untersuchenden Vektoren linear unabhängig sind. Ist damit dann die Aufgabe bereits gelöst? Irgendwie habe ich immer noch nicht so recht den Durchblick!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Fr 17.11.2006 | Autor: | DaMenge |
Hi nochmal,
> Wenn in dieser Gleichung
> [mm]r\cdot{}\vec{a}+(2r+3s)\cdot{}\vec{b}+(t-r-s)\cdot{}\vec{c}=0[/mm]
> die Koeffizienten der Vektoren 0 sind (mit r=s=t=0), dann
ok, da hab ich mich wohl schlecht ausgedrückt (aber ich wollte ja nicht die Lösung direkt verraten), also aus der Gleichung und daraus, dass die drei Vektoren a,b und c linear unabhängig sind, folgt, dass die Koeffizienten in der Gleichung (nämlich die vor a, b und c) gleich 0 sein müssen (überlege dir wirklich mal, warum das gilt !),also:
r=0
2r+2s=0
t-r-s=0
daraus musst du jetzt noch folgern, dass r=s=t=0 ist
(aber das dürfte jetzt schon fast zu einfach sein...)
viele Grüße
DaMenge
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:02 Fr 17.11.2006 | Autor: | feku |
Hi, vielen Dank! Jetzt hab ichs kapiert, hoffe ich zumindest. Wir wissen, dass es sich um drei gegebene linear unabhängige Vektoren handelt. Daher müssen die Koeffizienten vor a, b und c 0 sein. Daher gilt dann
r=0
2r+2s=0
t-r-s=0
woraus dann folgt (ist jetzt wirklich sehr einfach!)
r=0
2*0+2s=0 -> 2s=0 -> s=0
t-0-0=0 -> t=0
Das sollte es sein. Ich denke, das Prinzip habe ich nun verstanden.
|
|
|
|