Lineare unabhängigkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] A\in\IR^{n\times x} [/mm] mit unterschiedliche Eigenwerten [mm] \{\lambda_{k}\}_{k=1}^{n} [/mm] (und korrespondierenden Eigenvektoren [mm] \{\textbf{u}_{k}\}_{k=1}^{n}), [/mm] dann ist eine Möglichkeit die lineare Unabhängigkeit der Eigenvektoren zu zeigen gegeben durch die Multiplikation der Schlüsselgleichung
[mm] \sum_{k=1}^{n}c_{k}\textbf{u}_{k}=\textbf{0} [/mm] mit [mm] A-\lambda_{j}I [/mm] für geeignete [mm] j\in [/mm] 1,...,n.
Kann diese Vorgehensweise auch auf komplex-konjugierte Eigenwerte von A ausgeweitet werden ? |
Hallo,
mein Problem ist hier, dass mir nicht klar ist, was mit die Multiplikation mit [mm] (A-\lambda_{j}I) [/mm] bringt, diese Vorgehensweise war mir so nicht bekannt. Daher fällt es mir schwer eine Begründung für oder gegen die Ausweitung auf komplex-konjugierte Eigenwerte zu finden.
Ausgeschrieben ergibt das doch
[mm] (A-\lambda_{j}I)\sum_{k=1}^{n}c_{k}\textbf{u}_{k}=c_{1}(A-\lambda_{j}I)\textbf{u}_{1}+...+c_{n}(A-\lambda_{j}I)\textbf{u}_{n}=(c_{1}A\textbf{u}_{1}-c_{1}\lambda_{1}\textbf{u}_{1})+...+(c_{n}A\textbf{u}_{n}-c_{n}\lambda_{n}\textbf{u}_{n})
[/mm]
wobei ich hier davon ausgehe, dass j an den jeweiligen Index von [mm] \textbf{u}_{i} [/mm] angepasst wird. Was mir nun auffällt ist, dass diese Summe doch in jedem Fall gleich null ist, da [mm] A\textbf{u}_{k}=\lambda_{k}u_{k} [/mm] ist nach der Eigenwert-Eigenvektor Beziehung, egal wie ich [mm] c_{i} [/mm] wähle.
Wo ist hier mein Denkfehler ? Habe ich etwas falsch ausmultipliziert oder j für [mm] \lambda_{j} [/mm] falsch gewählt ?
Wäre dankbar für Denkanstöße!
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:22 Sa 29.01.2011 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Ich zeig Dir mal den Fall n=2 und j=1 . Dann siehst Du vielleicht, wo es lang geht.
$0= (A-\lambda_{1}I)\sum_{k=1}^{2}c_{k}\textbf{u}_{k}=}=(c_{1}A\textbf{u}_{1}-c_{1}\lambda_{1}\textbf{u}_{1})+(c_{2}A\textbf{u}_{2}-c_{2}\lambda_{1}\textbf{u}_{2}) = c_2(\lambda_2-\lambda_1)\textbf{u}_{2}$
Es folgt: c_2=0
FRED
|
|
|
|
|
Hallo fred,
danke für deine Antwort. Ich bin das ganze jetzt noch einmal durchgegangen und habe es mir für komplex-konjugierte Eigenwerte (und dementsprechend komplex-konjugierte Eigenvektoren) noch einmal ausführlich aufgeschrieben. Nachdem ich das getan habe, komme ich zu dem Schluss, dass man die Methode auch auf komplex-konjugierte eigenwerte anwenden kann. Die Begründung ist wieder, dass alle Eigenwerte unterschiedlich sind und daher mindestens Real- oder Imaginärteil dafür unterschiedlich sein müssen.
Stimmt das ?
LG
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:10 So 30.01.2011 | Autor: | fred97 |
> Hallo fred,
>
> danke für deine Antwort. Ich bin das ganze jetzt noch
> einmal durchgegangen und habe es mir für
> komplex-konjugierte Eigenwerte (und dementsprechend
> komplex-konjugierte Eigenvektoren) noch einmal ausführlich
> aufgeschrieben. Nachdem ich das getan habe, komme ich zu
> dem Schluss, dass man die Methode auch auf
> komplex-konjugierte eigenwerte anwenden kann. Die
> Begründung ist wieder, dass alle Eigenwerte
> unterschiedlich sind und daher mindestens Real- oder
> Imaginärteil dafür unterschiedlich sein müssen.
>
> Stimmt das ?
Ja
FRED
>
> LG
|
|
|
|