www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Lineares Modell
Lineares Modell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Modell: Konsistenz von Mittelwerten
Status: (Frage) überfällig Status 
Datum: 00:23 Di 14.05.2013
Autor: Reduktion

Hallo zusammen,

für lineare Modelle [mm] Y=\zeta+\epsilon [/mm] mit [mm] Y\in\IR^n [/mm] und [mm] \zeta\in W_r, [/mm] wobei [mm] W_r [/mm] ein r-dimensionaler Unterraum von [mm] \IR^n [/mm] ist, wird aus dem LQ-Test eine Teststatistik [mm] V_n(Y)=\frac{n-r}{r-q}\frac{\|Y-\widehat{\zeta}_0(Y)\|^2-\|Y-\widehat{\zeta}(Y)\|^2}{\|Y-\widehat{\zeta}(Y)\|^2} [/mm] für die Hypothesen [mm] H_0: \zeta\in W_q [/mm] gegen [mm] H_1: \zeta\in W_r\setminus W_q [/mm] konstruiert.

Im Fall eines p-Stichprobenmodells erhält man durch geeignete Wahl der Hypothesen die Statistik  
[mm] \frac{(q-1)(p-1)}{p-1}\frac{p\sum_{j=1}^p (y_{\bullet j}-y_{\bullet\bullet})^2}{\sum_{i,j=1}^{q,p}(y_{ij}-y_{i\bullet}-y_{\bullet j}+y_{\bullet\bullet})^2}, [/mm] mit n=pq und r=p+q-1.

Da [mm] \epsilon\sim\mathcal{N}_n(0,\sigma^2I_n)-verteilt [/mm] ist, ist [mm] Y=(Y_{11},..,Y_{q1},..,Y_{1p},..,Y_{qp})\sim\mathcal{N}_n(\zeta,\sigma^2I_n). [/mm] Ändert man die Verteilung von Y so ab, dass [mm] (Y_{i1},..,Y_{ip})\sim\mathcal{N}_p(\zeta_i,\Sigma)-verteilt [/mm] sind, sind dann die Schätzer [mm] \widehat{\zeta} [/mm] und [mm] \widehat{\zeta}_0 [/mm] weiterin konsistent für [mm] \zeta [/mm] unter der jeweiligen Hypothese?

Abkürzungen:
[mm] Y_{i\bullet}:=\frac{1}{p}\sum_{j=1}^p Y_{ij} [/mm]
[mm] Y_{\bullet j}:=\frac{1}{q}\sum_{i=1}^n Y_{ij} [/mm]
[mm] Y_{\bullet\bullet}:=\frac{1}{pq}\sum_{i=1}^n\sum_{j=1}^p Y_{ij} [/mm]

        
Bezug
Lineares Modell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 16.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]