Lipschitz-Konstante und allgm. MWS < Analysis < Hochschule < Mathe < Vorhilfe
|
Sei [mm] E:=(R^m,\|\cdot\|_2) [/mm] ein linearer normierter Raum, [mm] \mathcal X\subset E [/mm] offen, [mm] \mathbf a,\mathbf b \in\mathcal X [/mm] mit [mm] S\left]\mathbf a,\mathbf b\right[:=\{\lambda\mathbf b+(1-\lambda)\mathbf a | \lambda\in\left]0,1\right[\}\subset \mathcal X [/mm]. Ist [mm] f:\mathcal X \to R [/mm] partiell differenzierbar in [mm] \mathbf x [/mm] für alle [mm] \mathbf x\in S\left]\mathbf a,\mathbf b\right[ [/mm], so gibt es ein [mm] \mathbf z \in\left]\mathbf a,\mathbf b\right[ [/mm] für das gilt:
[mm] \left| f(\mathbf b)-f(\mathbf a)\right|=\left|\nabla f(\mathbf z)^T(\mathbf b-\mathbf a)\right|\stackrel{\mbox{\small C.S.-Ungl.}}\leq\|\nabla f(\mathbf z)\|_2\|\mathbf b-\mathbf a\|_2 [/mm] (MWS).
Weiter ist [mm] L(f):=\sup\nolimits_{\mathbf b,\mathbf a}\frac{\left| f(\mathbf b)-f(\mathbf a)\right|}{\|\mathbf b-\mathbf a\|_2}>0 [/mm] die Lipschitz-Konstante von f.
Mir gelingt es nicht folgenden Zusammenhang zu beweisen:
Nimmt [mm] \|\nabla f(\mathbf z)\|_2 [/mm] auf [mm] S\left]\mathbf a,\mathbf b\right[\subset\mathcal X [/mm] sogar ein Maximum ein, so gilt:
[mm] L(f)=\max\nolimits_{\mathbf z}\|\nabla f(\mathbf z)\|_2>0 [/mm]
Ich würde mich wirklich sehr freuen, wenn mir beim Beweis jemand helfen könnte.
Schon einmal ein Dankeschön !
Ich habe diese Frage in keinem weiteren Forum gestellt.
|
|
|
|
Hallo bandicoot,
Bei dieser Aufgabe scheint mir folgendes Vorgehen zur Vereinfachung ratsam:
Betrachte nicht f(x) sondern [mm]g(\lambda )=f(\lambda b+(1-\lambda )a)[/mm] Zumindest wenn ich Dich richtig verstehe??
gruß
mathemaduenn
Edit Ich häng mal noch die Aufgabe so wie ich Sie aufgefasst habe an
> Sei [mm]E:=(R^m,\|\cdot\|_2)[/mm] ein linearer normierter Raum,
> [mm]\mathcal X\subset E[/mm] offen, [mm]\mathbf a,\mathbf b \in\mathcal X[/mm]
> mit [mm]S\left(\mathbf a,\mathbf b\right):=\{\lambda\mathbf b+(1-\lambda)\mathbf a | \lambda\in\left]0,1\right[\}\subset \mathcal X [/mm].
> Ist [mm]f:\mathcal X \to R[/mm] partiell differenzierbar in [mm]\mathbf x[/mm]
> für alle [mm]\mathbf x\in S\left(\mathbf a,\mathbf b\right) [/mm],
> so gibt es ein [mm]\mathbf z \in S\left(\mathbf a,\mathbf b\right) [/mm]
> für das gilt:
> [mm]\left| f(\mathbf b)-f(\mathbf a)\right|=\left|\nabla f(\mathbf z)^T(\mathbf b-\mathbf a)\right|\stackrel{\mbox{\small C.S.-Ungl.}}\leq\|\nabla f(\mathbf z)\|_2\|\mathbf b-\mathbf a\|_2[/mm]
> (MWS).
> Weiter ist [mm]L(f):=\sup\nolimits_{x_1,x_2\in S\left(\mathbf a,\mathbf b\right) }\frac{\left| f(\mathbf x_1)-f(\mathbf x_2)\right|}{\|\mathbf x_1-\mathbf x_2\|_2}>0[/mm]
> die Lipschitz-Konstante von f.
> Mir gelingt es nicht folgenden Zusammenhang zu beweisen:
> Nimmt [mm]\|\nabla f(\mathbf z)\|_2[/mm] auf [mm]S\left(\mathbf a,\mathbf b\right)\subset\mathcal X[/mm]
> sogar ein Maximum ein, so gilt:
> [mm]L(f)=\max\nolimits_{\mathbf z\in S\left(\mathbf a,\mathbf b\right) }\|\nabla f(\mathbf z)\|_2>0[/mm]
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:24 Do 19.08.2004 | Autor: | bandicoot |
Hallo mathemaduenn,
Per Definition gilt ersteinmal tatsächlich [mm] L(f):=\sup\limits_{x1,x2\in\mathcal X} \frac{\left| f(\mathbf x_1)-f(\mathbf x_2)\right|}{\|\mathbf x_1-\mathbf x_2\|_2}>0[/mm] für die Lipschitz-Konstante einer lipschitz-stetigen Funktion f.
Ich meinte:
Wenn es irgend ein [mm] z\in\mathcal X [/mm] gibt für das [mm] \|\nabla f(\mathbf z)\|_2 [/mm] ein Maximum besitzt (vorausgesetzt f ist überall diff.-bar), dann gibt es auch ein [mm] S(\mathbf a, \mathbf b); \mathbf a, \mathbf b\in \mathcal X [/mm] nach dem MWS, so dass gilt:
[mm] \frac{\left| f(\mathbf b)-f(\mathbf a)\right|}{\|\mathbf b-\mathbf a\|_2} = \sup\limits_{x1,x2\in\mathcal X} \frac{\left| f(\mathbf x_1)-f(\mathbf x_2)\right|}{\|\mathbf x_1-\mathbf x_2\|_2}[/mm] ?
Ich habe mir diesen Sachverhalt ersteinmal intuitiv anhand ein paar Beispielen im 1-dim Fall bestätigt.
|
|
|
|
|
Hallo bandicoot,
Vielleicht postest du mal deine Beispiele damit klar ist was du zeigen willst. Ich habs immer noch nicht kapiert.
gruß
mathemaduenn
|
|
|
|
|
Hallo ihr beiden. Folgender Hinweis muesste euch helfen: Wann gilt bei der Cauchy-Schwarz-Ungleichung Gleichheit?
Viele Gruesse,
Simon
|
|
|
|
|
Hallo,
mitlerweile habe ich einen Beweis meiner Annahme. Der Vollständigkeit halber für die, die es interressiert hier der Beweis in zwei Schritten:
1. Sei [mm] \mathcal X\subseteq \IR^m [/mm] offen u. konvex, [mm]\mathbf a,\mathbf b \in \mathcal X, \mathbf a\neq\mathbf b [/mm] beliebig, dann gibt es nach dem MWS ein [mm] z^0 \in S]\mathbf a| \mathbf b[ \subseteq \mathcal X [/mm]:
[mm] |f(\mathbf b)-f(\mathbf a)|=\|\nabla f(\mathbf z^0)^T\cdot (\mathbf b-\mathbf a)\leq \|\nabla f(\mathbf z^0)\|_2 \|\mathbf b-\mathbf a\|_2 [/mm]
[mm] \Rightarrow \frac{|f(\mathbf b)-f(\mathbf a)|}{\|\mathbf b-\mathbf a\|_2}\leq \|\nabla f(\mathbf z^0)\|\leq\sup_{\mathbf z\in \mathcal X} \|\nabla f(z)\|_2 [/mm]
[mm] \Leftrightarrow L(f):=\sup_{\mathbf a,\mathbf b \in \mathcal X,\mathbf a \neq\mathbf b} \frac{|f(\mathbf b)-f(\mathbf a)|}{\|\mathbf b-\mathbf a\|_2}\leq\sup_{\mathbf z\in \mathcal X} \|\nabla f(z)\|_2 [/mm]
2. Zu [mm]\mathbf z \in \mathcal X[/mm] gilt mit [mm] \mathbf v\in \IR^m \setminus\{0\}[/mm] beliebig:
[mm] \lim_{t\to 0} \left(\frac{f(\mathbf z+t\mathbf v)-f(\mathbf z)}{t}\right)=\partial_{\mathbf v}f(\mathbf z)=\nabla f(\mathbf z)^T\mathbf v[/mm]
[mm] \Rightarrow \lim_{t\to 0} \frac{|f(\mathbf z+t\mathbf v)-f(\mathbf z)|}{\| t\mathbf v\|_2} = \|\nabla f(\mathbf z) \|_2 \leq L(f) [/mm] für genügend kleine [mm] t [/mm].
[mm] \Rightarrow \sup_{z\in\mathcal X} \|\nabla f(\mathbf z) \|_2 \leq L(f) [/mm]
q.e.d.
|
|
|
|