www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Lösen von Gleichungen
Lösen von Gleichungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Gleichungen: Euler- und Sinusgleichung
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 15.12.2008
Autor: Octron

Aufgabe 1
Lösen Sie folgende Gleichung.

a) sin(5x)=5

Aufgabe 2
Lösen Sie folgende Gleichung.

b) e^(2x)+e^(x-1)=2(e^(x+1)+1)

Hallo,
ich hab mal ne Frage zu den zwei Gleichungen da oben.
Zu a)
So weit ich weiß, kann man doch gar nichts für x einsetzen, sodass die Gleichung 5 ergibt, oder? Der sinus ist doch 2 Pi periodisch und hat als Maximalen Wert 1?! Stimmt das so oder überseh ich vielleicht eine Möglichkeit, wie ich diese Aufgabe lösen kann? Ich hatte die Gleichung auch schonmal aufgelöst in

5sin(x)cos(x)=5,

aber damit diese Gleichung stimmt, müsste ja sin(x)cos(x)=1 sein und auch das geht meiner Meinung nach nicht...

Zu b)
Wie kann ich diese Gleichung lösen? Ich hab es schon mit ln versucht, aber da kommt dann bei mir

3x-xln2=2ln2+1

raus und ich weiß nicht, wie ich das lösen kann. Ich hab es dann nochmal mit substituieren versucht (wahrscheinlich unter Mißachtung einiger Rechenregeln). Dafür hab ich [mm] e^x [/mm] mit b substituiert und bin nicht weiter gekommen als

[mm] b^2-2b+1/b=2 [/mm]

Ich glaub aber nicht, dass das richitg ist.

Könnte mir vielleicht jemand einen Hinweis geben, wie ich a) und b) lösen könnte? Das sieht so leicht aus und ich bekomm es einfach nicht hin :(

Vielen Dank

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösen von Gleichungen: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 17:23 Mo 15.12.2008
Autor: Loddar

Hallo Octron!


Substituiere hier $t \ := \ [mm] e^x$ [/mm] . Damit erhältst Du dann eine quadratische Gleichung.


Gruß
Loddar


Bezug
                
Bezug
Lösen von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 15.12.2008
Autor: Octron

Kommt da dann

[mm] t^2+t^-1=2t^1+2 [/mm]

raus? Weil da hab ich das Gefühl, dass das nciht stimmt. So hatte ich es ja auch schon einmal versucht..

Bezug
                        
Bezug
Lösen von Gleichungen: nicht richtig
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 15.12.2008
Autor: Loddar

Hallo Octron!


Das stimmt so nicht. Forme Deine Gleichung erst um, bevor  Du substituierst:

[mm] $$e^{2x}+e^{x-1} [/mm] \ = \ [mm] 2*\left(e^{x+1}+1\right)$$ [/mm]
[mm] $$e^{2x}+e^{x-1} [/mm] \ = \ [mm] 2*e^{x+1}+2$$ [/mm]
[mm] $$\left(\red{e^x}\right)^2+\red{e^x}*e^{-1} [/mm] \ = \ [mm] 2*\red{e^x}*e^1+2$$ [/mm]
[mm] $$\red{t}^2+\red{t}*\bruch{1}{e} [/mm] \ = \ [mm] 2*\red{t}*e+2$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Lösen von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 15.12.2008
Autor: Octron

Ich hab jetzt mal hin und her probiert, aber ich bekomme das x einfach nicht raus. Ich hab das t jetzt ausgerechnet, aber das bringt mich ja nicht wirklich weiter :(
Wie geh ich denn da nochmal weiter vor?

Bezug
                                        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mo 15.12.2008
Autor: reverend

Was hast Du denn für t herausbekommen?

Du hattest substituiert: [mm] t=e^x [/mm]

Also musst Du jetzt resubstituieren: [mm] x=\ln{t} [/mm]

Bezug
                                                
Bezug
Lösen von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mo 15.12.2008
Autor: Octron

Ich hab für t1=4,849 und für t2= -0,412 raus. Aus negativen Zahlen kann ich kein ln machen, und für t1 würde dann 1,578 rauskommen.
Wenn ich das dann zur Probe nochmal einsetzte, kommt 25,3=28,36 raus.
Ist glaub ich ne zu große Differenz für Rundungsfehler...

Bezug
                                                        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Mo 15.12.2008
Autor: reverend

Dann poste doch mal Deine Rechnung für t - wie bist Du zu diesen Werten gekommen?
Fehlersuche geht nur mit Vorlage...

Bezug
                                                                
Bezug
Lösen von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Di 16.12.2008
Autor: Octron

Aufgabe
t²+t/e=2te+2      | -2te-2
[mm] \Rightarrow [/mm] t²+t/e-2te-2=0

p-q-Formel:

[mm] t=-(1/e-2e)/2\pm\wurzel{(1/e-2e)²+2} [/mm]
[mm] \Rightarrow -(1/e-2e)/2\pm\wurzel{6,921} [/mm]
t1= 4,849
t2= -0,421

Oben steht jetzt, wie ich gerechnet hab.

Bezug
                                                                        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Di 16.12.2008
Autor: reverend

Aha.

> t²+t/e=2te+2      | -2te-2
>  [mm]\Rightarrow[/mm] t²+t/e-2te-2=0
>  
> p-q-Formel:
>  
> [mm]t=-\bruch{(1/e-2e)}{2}\pm\wurzel{\left(\bruch{(1/e-2e)}{\red{2}}\right)^2+2}[/mm]

Die rote Zwei fehlte Dir noch.

>  Oben steht jetzt, wie ich gerechnet hab.  

Ich hab's nicht ausgerechnet, denke aber, dass Du jetzt näher drankommst.

Bezug
                                                                        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Di 16.12.2008
Autor: Astor

Hallo,
also die Rechnung von reverend ist richtig. Wenn ich den Term unter der Wurzel zusammenfasse, so erhalte ich:
[mm](e+1/2e)^2[/mm]
Dann erhält man als Lösung für [mm]e^x[/mm]
[mm]x_1,2=e-1/2e\pm(e+1/2e)[/mm]

Bezug
        
Bezug
Lösen von Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 15.12.2008
Autor: fred97


> Lösen Sie folgende Gleichung.
>  
> a) sin(5x)=5


Diese Gleichung hat keine Lösung !!!


>  Lösen Sie folgende Gleichung.
>  
> b) e^(2x)+e^(x-1)=2(e^(x+1)+1)
>  Hallo,
>  ich hab mal ne Frage zu den zwei Gleichungen da oben.
>  Zu a)
> So weit ich weiß, kann man doch gar nichts für x einsetzen,
> sodass die Gleichung 5 ergibt, oder? Der sinus ist doch 2
> Pi periodisch und hat als Maximalen Wert 1?! Stimmt das so
> oder überseh ich vielleicht eine Möglichkeit, wie ich diese
> Aufgabe lösen kann? Ich hatte die Gleichung auch schonmal
> aufgelöst in
>
> 5sin(x)cos(x)=5,


Diese Gleichung hat auch keine Lösung

FRED


>
> aber damit diese Gleichung stimmt, müsste ja sin(x)cos(x)=1
> sein und auch das geht meiner Meinung nach nicht...
>  
> Zu b)
>  Wie kann ich diese Gleichung lösen? Ich hab es schon mit
> ln versucht, aber da kommt dann bei mir
>
> 3x-xln2=2ln2+1
>
> raus und ich weiß nicht, wie ich das lösen kann. Ich hab es
> dann nochmal mit substituieren versucht (wahrscheinlich
> unter Mißachtung einiger Rechenregeln). Dafür hab ich [mm]e^x[/mm]
> mit b substituiert und bin nicht weiter gekommen als
>  
> [mm]b^2-2b+1/b=2[/mm]
>  
> Ich glaub aber nicht, dass das richitg ist.
>  
> Könnte mir vielleicht jemand einen Hinweis geben, wie ich
> a) und b) lösen könnte? Das sieht so leicht aus und ich
> bekomm es einfach nicht hin :(

a) hat keine Lösung



>  
> Vielen Dank
>  
> P.S.: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Lösen von Gleichungen: zu Aufgabe a.)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mo 15.12.2008
Autor: Loddar

Hallo Octron!


[mm] $$\sin(5*x) [/mm] \ [mm] \red{\not=} [/mm] \ [mm] 5*\sin(x)*\cos(x)$$ [/mm]

Da hast Du Dich wohl durch die Identität [mm] $\sin(2*x) [/mm] \ = \ [mm] 2*\sin(x)*\cos(x)$ [/mm] verleiten lassen.
Jedoch ist dies nicht auf andere Vielfache von x übertragbar.


Gruß
Loddar


Bezug
                
Bezug
Lösen von Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 15.12.2008
Autor: Octron

Und wie kann ich das dann umformen, dass es lösbar ist? Oder ist es so oder so nicht lösbar?

Bezug
                        
Bezug
Lösen von Gleichungen: bleibt unlösbar
Status: (Antwort) fertig Status 
Datum: 17:42 Mo 15.12.2008
Autor: Loddar

Hallo Octron!


Eine unlösbare Gleichung (bzw. eine Gleichung mit der leeren Menge als Lösungsmenge) bleibt immer unlösbar.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]