Lösung für AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:54 So 30.03.2014 | Autor: | Mexxchen |
Aufgabe | a) Geben Sie für das Anfangswertproblem x' = [mm] \wurzel{x} [/mm] (Betrag von x), x(0) = 1 eine auf ganz [mm] \IR [/mm] definierte Lösung an.
b) Geben Sie zu diesem Anfangswertproblem eine einparametrige Schar von Lösungen an, die jeweils auf ganz [mm] \IR [/mm] definiert sind. |
Hallo,
ich komme bei dieser Aufgabe leider nicht weiter. Ich habe bei a) [mm] x^1/2 [/mm] durch u ersetzt und dann abgeleitet. Mein Ergebnis ist dann u' = 1/2. Integriert erhalte ich für u = 1/2 * t + C. Jetzt brauche ich doch eine Funktion C(t), um die Aufgabe mit der Variation von Konstanten zu lösen? Hier komme ich nicht weiter. Bin ich auf dem richtigen Weg?
Vielen Dank schonmal.
Mexxchen
|
|
|
|
Hallo,
dein Ansatz ist völlig unverständlich. Es gibt hier auch nichts zu substituieren, sondern man löst die DGL auf einfachstem Weg per Trennung der Variablen. Die entstehenden Lösungen sind dann in diesem Fall automaisch auf ganz [mm] \IR [/mm] definiert...
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:57 So 30.03.2014 | Autor: | Mexxchen |
Super. Vielen, vielen Dank. Ich bekomm dann als Ergebnis x(t) = [mm] \bruch{1}{4}*t^2+t+1 [/mm]
|
|
|
|