Lösungsmenge lineares GS < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Es seien [mm] A:=\pmat{ 0 & 2 & 2 & -3 & 2 & 1 \\ -2 & 2 & 4 & -3 & 1 & 0 \\ 1 & 1 & -1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 & 4 & 1 \\ }, b:=\pmat{ 2 \\ 0 \\ 1 \\ 1 } [/mm] und [mm] c:=\pmat{ -1 \\ 1 \\ 0 \\ 2 }
[/mm]
Berechnen Sie die Lösungsmenge des durch ( A, b ) und des durch ( A, c ) gegebenen Systems linearer Gleichungen. |
Hallo miteinander.
Ich habe die Matrix A und b zunächst zusammengeschlossen, und dann das Gauß'sche Eliminationsvefahren angewendet.
[mm] \pmat{ 1 & 0 & 0 & 0 & 31/8 & 5/8 & 7/2 \\ 0 & 1 & 0 & 0 & -5/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 27/8 & 1/8 & 3/4 \\ 0 & 0 & 0 & 1 & -1/12 & 1/12 & -1/6 \\}
[/mm]
So jetzt zu meinem Problem: bis jetzt haben wir nur Quadratische Matrizen bearbeitet, sodass nach dem Verfahren nur mehr die Einheitsmatrix dasteht, dann war die Lösung recht simpel. Doch jetzt weiß ich nicht, wie ich die Lösung bilden soll...
Kann mir wer weiterhelfen?
Vielen Dank
|
|
|
|
> Es seien [mm]A:=\pmat{ 0 & 2 & 2 & -3 & 2 & 1 \\ -2 & 2 & 4 & -3 & 1 & 0 \\ 1 & 1 & -1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 & 4 & 1 \\ }, b:=\pmat{ 2 \\ 0 \\ 1 \\ 1 }[/mm]
> und [mm]c:=\pmat{ -1 \\ 1 \\ 0 \\ 2 }[/mm]
> Berechnen Sie die
> Lösungsmenge des durch ( A, b ) und des durch ( A, c )
> gegebenen Systems linearer Gleichungen.
> Hallo miteinander.
> Ich habe die Matrix A und b zunächst zusammengeschlossen,
> und dann das Gauß'sche Eliminationsvefahren angewendet.
> [mm]\pmat{ 1 & 0 & 0 & 0 & 31/8 & 5/8 & 7/2 \\ 0 & 1 & 0 & 0 & -5/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 27/8 & 1/8 & 3/4 \\ 0 & 0 & 0 & 1 & -1/12 & 1/12 & -1/6 \\}[/mm]
>
> So jetzt zu meinem Problem: bis jetzt haben wir nur
> Quadratische Matrizen bearbeitet, sodass nach dem Verfahren
> nur mehr die Einheitsmatrix dasteht, dann war die Lösung
> recht simpel. Doch jetzt weiß ich nicht, wie ich die
> Lösung bilden soll...
> Kann mir wer weiterhelfen?
> Vielen Dank
>
Du kannst sie quadratisch machen, indem du einfach zwei Zeilen mit 0er unten ergänzt. Aber das ist nicht nötig, weil die einem auch nicht wirklich weiterhelfen...
Hier sind schon per se weniger Bedingungen an die gesuchten Zahlen gestellt als es gesuchte Zahlen gibt, d.h. es wird keine eindeutige Lösung geben.
Also: die letzte Zeile deiner umgeformten Matrix (die ich nicht nachgerechnet habe) ist nur die Kurzschreibweise für
[mm] $0*x_1 [/mm] + [mm] 0*x_2 [/mm] + [mm] 0*x_3 [/mm] + [mm] 1*x_4 [/mm] - [mm] \bruch{1}{12} [/mm] * [mm] x_5 [/mm] + [mm] \bruch{1}{12} [/mm] * [mm] x_6 [/mm] = - [mm] \bruch{1}{6} [/mm] $
Jetzt bleiben (der Einfachheit halber) [mm] $x_5$ [/mm] und [mm] $x_6$ [/mm] als Parameter stehen und du bestimmst damit die Lösungen für die anderen 4 Unbekannten.
Vielleicht hilft's...
|
|
|
|