Logarithmusgesetze < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:30 Di 30.09.2008 | Autor: | itse |
Aufgabe | Vereinfachen Sie den folgenden Ausdruck unter Benutzung der Definition des Logarithmus sowie der Logarithmusgesetze:
[mm] $\bruch{1}{2}ln \left(\bruch{y}{x} + \wurzel{\bruch{y²}{x²} - 1} \right) [/mm] - [mm] \bruch{1}{2}ln \bruch{1}{y-\wurzel{y²-x²}} [/mm] + ln [mm] \wurzel{x}$ [/mm] |
Hallo Zusammen,
ich habe es soweit umgeformt:
[mm] $\bruch{1}{2}ln \left(\bruch{y}{x} + \wurzel{\bruch{y²}{x²} - 1} \right) [/mm] - [mm] \bruch{1}{2}ln \bruch{1}{y-\wurzel{y²-x²}} [/mm] + ln [mm] \wurzel{x}$
[/mm]
$= [mm] \bruch{1}{2}ln \left(\bruch{y+[(y-x)(y+x)]^{\bruch{1}{2}} + ln x^\bruch{2}{3}}{x} \right) [/mm] - [mm] \bruch{1}{2}ln \bruch{1}{y-[(y-x)(y+x)]^\bruch{1}{2}}$
[/mm]
$= [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{2} [/mm] ln [mm] \bruch{\bruch{y+[(y-x)(y+x)]^{\bruch{1}{2}} + ln x^\bruch{2}{3}}{x}}{\bruch{1}{y-[(y-x)(y+x)]^\bruch{1}{2}}}$
[/mm]
$= ln [mm] \bruch{\bruch{y+[(y-x)(y+x)]^{\bruch{1}{2}} + ln (x)^\bruch{2}{3}}{x}}{\bruch{1}{y-[(y-x)(y+x)]^\bruch{1}{2}}}$
[/mm]
$= ln [mm] \bruch{y+[(y-x)(y+x)]^{\bruch{1}{2}} + ln (x)^\bruch{2}{3}}{x} \cdot{} \bruch{y-[(y-x)(y+x)]^\bruch{1}{2}}{1}$
[/mm]
$= ln [mm] \bruch{\left( y+[(y-x)(y+x)]^{\bruch{1}{2}} + ln (x)^\bruch{2}{3}\right) \cdot{} \left( y-[(y-x)(y+x)]^\bruch{1}{2}\right)}{x}$
[/mm]
$= ln [mm] \bruch{y² - \left[ \wurzel{(y²-x²)}\right]^2 + ln(x)^\bruch{2}{3}\cdot{}y + ln(x)^\bruch{2}{3}\cdot{}[(y-x)(y+x)]^\bruch{1}{2}}{x}$
[/mm]
$ = ln [mm] \bruch{x² + ln(x)^\bruch{2}{3}\cdot{}y + ln(x)^\bruch{2}{3}\cdot{}[(y-x)(y+x)]^\bruch{1}{2}}{x}$
[/mm]
Wie geht es nun weiter? Oder bin ich schon auf dem Holzweg? Es soll ln(x) rauskommen.
Grüße
itse
|
|
|
|
Hallo itse!
Vorneweg auch ich habe als Ergebnis [mm] $\ln(x)$ [/mm] .
> ich habe es soweit umgeformt:
>
> [mm]\bruch{1}{2}ln \left(\bruch{y}{x} + \wurzel{\bruch{y²}{x²} - 1} \right) - \bruch{1}{2}ln \bruch{1}{y-\wurzel{y²-x²}} + ln \wurzel{x}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Wie kommst Du auf den Exponenten $\bruch{3}{2}$ ? Der ist falsch.
Ich würde wie folgt beginnen ...
$$\bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}*\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}$$
$$= \ \bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2-x^2}{x^2}} \right) \ \red{+} \ \bruch{1}{2}*\ln \left(y-\wurzel{y^2-x^2}\right) + \bruch{1}{2}*\ln(x)$$
$$= \ \bruch{1}{2}*\left[\ln \left(\bruch{y+ \wurzel{y^2-x^2}}{x} \right)+\ln \left(y-\wurzel{y^2-x^2}\right) + \ln(x)\right]$$
$$= \ \bruch{1}{2}*\left[\ln \left({y+ \wurzel{y^2-x^2} \right)-\ln(x)+\ln \left(y-\wurzel{y^2-x^2}\right) + \ln(x)\right]$$
usw.
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:00 Mi 01.10.2008 | Autor: | itse |
> Hallo itse!
>
>
> Vorneweg auch ich habe als Ergebnis [mm]\ln(x)[/mm] .
>
>
> > ich habe es soweit umgeformt:
> >
> > [mm]\bruch{1}{2}ln \left(\bruch{y}{x} + \wurzel{\bruch{y²}{x²} - 1} \right) - \bruch{1}{2}ln \bruch{1}{y-\wurzel{y²-x²}} + ln \wurzel{x}[/mm]
>
> Wie kommst Du auf den Exponenten [mm]\bruch{3}{2}[/mm] ? Der
> ist falsch.
ich habe es fälschlicherweise so umgeformt [mm] \bruch{ln(\wurzel{x}) \cdot{} x}{x} [/mm] = [mm] \bruch{ln x^{\bruch{1}{2}} \cdot{} x}{x} [/mm] = [mm] \bruch{ln x^{\bruch{3}{2}}}{x}, [/mm] dies ergibt natürlich etwas anderes als [mm] ln(\wurzel{x}), [/mm] da ich die Zugehörigkeit zum Logarithmus übersehen habe.
> Ich würde wie folgt beginnen ...
>
> [mm]\bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}*\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}[/mm]
>
> [mm]= \ \bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2-x^2}{x^2}} \right) \ \red{+} \ \bruch{1}{2}*\ln \left(y-\wurzel{y^2-x^2}\right) + \bruch{1}{2}*\ln(x)[/mm]
Hier verstehe ich die Umformung nicht, wie löst du den zweiten Bruch auf, damit nicht mehr eins geteilt durch da steht?
> [mm]= \ \bruch{1}{2}*\left[\ln \left(\bruch{y+ \wurzel{y^2-x^2}}{x} \right)+\ln \left(y-\wurzel{y^2-x^2}\right) + \ln(x)\right][/mm]
>
> [mm]= \ \bruch{1}{2}*\left[\ln \left({y+ \wurzel{y^2-x^2} \right)-\ln(x)+\ln \left(y-\wurzel{y^2-x^2}\right) + \ln(x)\right][/mm]
Wie müsste man meinen Weg anpassen, damit es stimmen würde?
Vielen Dank,
itse
|
|
|
|
|
> > Ich würde wie folgt beginnen ...
> >
> > [mm]\bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}*\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}[/mm]
>
> >
> > [mm]= \ \bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2-x^2}{x^2}} \right) \ \red{+} \ \bruch{1}{2}*\ln \left(y-\wurzel{y^2-x^2}\right) + \bruch{1}{2}*\ln(x)[/mm]
>
> Hier verstehe ich die Umformung nicht, wie löst du den
> zweiten Bruch auf, damit nicht mehr eins geteilt durch da
> steht?
Hallo,
indem man [mm] \bruch{1}{y-\wurzel{y^2-x^2}}=(y-\wurzel{y^2-x^2})^{-1} [/mm] verwendet.
> Wie müsste man meinen Weg anpassen, damit es stimmen
> würde?
Einfach durch richtiges Rechnen...
Du könntest so beginnen:
> $ [mm] \bruch{1}{2}\cdot{}\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) [/mm] - [mm] \bruch{1}{2}\cdot{}\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) [/mm] + [mm] \ln \wurzel{x} [/mm] $
[mm] =\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) [/mm] - ln [mm] \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) [/mm] + [mm] 2*\ln \wurzel{x}]
[/mm]
[mm] =\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) [/mm] - ln [mm] \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) [/mm] + [mm] \ln(x)]
[/mm]
Nun wäre man so weit, daß man aus den drei Logarithmen einen machen könnte mit den Logarithmusgesetzen.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:09 Do 02.10.2008 | Autor: | itse |
Hallo Zusammen,
> > > Ich würde wie folgt beginnen ...
> > >
> > > [mm]\bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}*\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}[/mm]
>
> >
> > >
> > > [mm]= \ \bruch{1}{2}*\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2-x^2}{x^2}} \right) \ \red{+} \ \bruch{1}{2}*\ln \left(y-\wurzel{y^2-x^2}\right) + \bruch{1}{2}*\ln(x)[/mm]
>
okay, der Bruch wird von [mm] \bruch{1}{y-\wurzel{y^2-x^2}} [/mm] zu [mm] (y-\wurzel{y^2-x^2})^{-1}, [/mm] warum aber kommt beim letzen Term [mm] \bruch{1}{2} [/mm] hinzu, warum ändert sich das Minuszeichen in ein Pluszeichen?
>
>
> Du könntest so beginnen:
>
>
> > [mm]\bruch{1}{2}\cdot{}\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}\cdot{}\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}[/mm]
>
> [mm]=\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right)[/mm]
> - ln [mm]\left\bruch{1}{y-\wurzel{y^2-x^2}}\right)[/mm] + [mm]2*\ln \wurzel{x}][/mm]
>
> [mm]=\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right)[/mm]
> - ln [mm]\left\bruch{1}{y-\wurzel{y^2-x^2}}\right)[/mm] + [mm]\ln(x)][/mm]
>
> Nun wäre man so weit, daß man aus den drei Logarithmen
> einen machen könnte mit den Logarithmusgesetzen.
dann würde es so weitergehen:
$ [mm] \bruch{1}{2} \left[ ln \bruch{\left( \bruch{y}{x} + \wurzel{\bruch{y²-x²}{x²}} \right) \cdot{} x}{\bruch{1}{y-\wurzel{y²-x²}}} \right]$
[/mm]
$= [mm] \bruch{1}{2} \left[ ln \bruch{(y+\wurzel{y²-x²}) \cdot{} x}{x} \cdot{} \bruch{y-\wurzel{y²-x²}}{1} \right] [/mm] = [mm] \bruch{1}{2} \left[ ln \bruch{\red{x}(y+\wurzel{y²-x²}) \cdot{} (y-\wurzel{y²-x²})}{\red{x}} \right]$
[/mm]
$= [mm] \bruch{1}{2} \left[ ln \left(y² - y(\wurzel{y²-x²}) + y(\wurzel{y²-x²}) - (\wurzel{y²-x²})^2 \right) \right]$
[/mm]
$= [mm] \bruch{1}{2} \left[ ln \left( y² - y² + x² \right) \right] [/mm] = [mm] \bruch{1}{2} \left[ ln(x)² \right] [/mm] = ln(x)$
Stimmt dies so?
Vielen Dank im Voraus
itse
|
|
|
|
|
> > Du könntest so beginnen:
> >
> >
> > > [mm]\bruch{1}{2}\cdot{}\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right) - \bruch{1}{2}\cdot{}\ln \left\bruch{1}{y-\wurzel{y^2-x^2}}\right) + \ln \wurzel{x}[/mm]
> >
> > [mm]=\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right)[/mm]
> > - ln [mm]\left\bruch{1}{y-\wurzel{y^2-x^2}}\right)[/mm] + [mm]2*\ln \wurzel{x}][/mm]
>
> >
> > [mm]=\bruch{1}{2}[\ln \left(\bruch{y}{x} + \wurzel{\bruch{y^2}{x^2} - 1} \right)[/mm]
> > - ln [mm]\left\bruch{1}{y-\wurzel{y^2-x^2}}\right)[/mm] + [mm]\ln(x)][/mm]
> >
> > Nun wäre man so weit, daß man aus den drei Logarithmen
> > einen machen könnte mit den Logarithmusgesetzen.
>
> dann würde es so weitergehen:
>
> [mm]\bruch{1}{2} \left[ ln \bruch{\left( \bruch{y}{x} + \wurzel{\bruch{y²-x²}{x²}} \right) \cdot{} x}{\bruch{1}{y-\wurzel{y²-x²}}} \right][/mm]
>
> [mm]= \bruch{1}{2} \left[ ln \bruch{(y+\wurzel{y²-x²}) \cdot{} x}{x} \cdot{} \bruch{y-\wurzel{y²-x²}}{1} \right] = \bruch{1}{2} \left[ ln \bruch{\red{x}(y+\wurzel{y²-x²}) \cdot{} (y-\wurzel{y²-x²})}{\red{x}} \right][/mm]
>
> [mm]= \bruch{1}{2} \left[ ln \left(y² - y(\wurzel{y²-x²}) + y(\wurzel{y²-x²}) - (\wurzel{y²-x²})^2 \right) \right][/mm]
>
> [mm]= \bruch{1}{2} \left[ ln \left( y² - y² + x² \right) \right] = \bruch{1}{2} \left[ ln(x)² \right] = ln(x)[/mm]
>
> Stimmt dies so?
Hallo,
ja, so ist alles richtig.
Gruß v. Angela
|
|
|
|
|
Hallo itse!
> okay, der Bruch wird von [mm]\bruch{1}{y-\wurzel{y^2-x^2}}[/mm] zu
> [mm](y-\wurzel{y^2-x^2})^{-1},[/mm] warum aber kommt beim letzen
> Term [mm]\bruch{1}{2}[/mm] hinzu, warum ändert sich das Minuszeichen
> in ein Pluszeichen?
Der Bruch kommt aus der Umformung [mm] $\wurzel{x} [/mm] \ = \ [mm] x^{\bruch{1}{2}}$ [/mm] .
Anschließend den Exponenten gemäß Logarithmusgesetz vor den [mm] $\ln(...)$ [/mm] ziehen.
Ebenso funktioniert das mit dem Exponenten [mm] $(...)^{-1}$ [/mm] . Da kommt dann der Faktor $(-1)_$ vor den [mm] $\ln(...)$ $\Rightarrow$ [/mm] Vorzeichenwechsel.
Gruß vom
Roadrunner
|
|
|
|