Logarithmusreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 22:37 So 04.06.2006 | Autor: | melek |
Aufgabe | a) Zeige, dass die Logarithmusreihe f(x)= [mm] \summe_{i=1}^{ \infty} (-1)^{i+1} \bruch{x^{i} }{i} [/mm] im Intervall [0,1] gleichmäßig gegen die Funktion log(1+x) konvergiert.
b) Beweise die Leibnizsche Identität
[mm] \bruch{ \pi}{4}= \summe_{i=0}^{ \infty} \bruch{-1^{i} }{2i+1} [/mm] mithilfe der Arcustangensreihe einmal mit und einmal ohne den Abelschen Grenzwertsatz. |
Guten Abend,
brauche unbedingt eure Hilfe.
zu a) also mit der gleichmäßigen Konvergenz bin ich immer noch ganz vertraut, weiß also nicht wie ich rangehen soll an die Aufgabe. Die Definition nützt mir nicht viel weiter.
b)diese Leibnizsche Identität seh ich zum ersten Mal.. weder dies noch die Arcustangensreihe ist mir bekannt. Hat jemand von euch ne Idee, wie ich anfangen soll?
ich danke
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Mi 07.06.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|