Lokalis. gebrochener Ideale < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:19 So 23.09.2012 | Autor: | Loko |
Aufgabe | R ist ein Integritätsring. Zeige, dass die Lokalisierung der gebrochenen R-Ideale die folgenden Eigenschaften erfüllt:
a) [mm] I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}} [/mm] = [mm] (I+J)_{\mathscr{p}}
[/mm]
b) [mm] I_{\mathscr{p}} J_{\mathscr{p}} [/mm] = [mm] (IJ)_{\mathscr{p}}
[/mm]
c) [mm] I_{\mathscr{p}} \cap J_{\mathscr{p}} [/mm] = (I [mm] \cap J)_{\mathscr{p}} [/mm] |
Hallo!
Zunächst nur zur a). Ich wollte lieber gleich nach dem ersten Aufgabenteil nachfragen ob das so funktioniert, bevor ich alle drei falsch mache ;)
Hier also meine Idee:
a) (i) x [mm] \in I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}} \Rightarrow [/mm] x [mm] \in (I+J)_{\mathscr{p}}
[/mm]
(ii) x [mm] \in \(I+J)_{\mathscr{p}} [/mm] Rightarrow x [mm] \in I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}}
[/mm]
i) x [mm] \in I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}} [/mm] = [mm] \{\bruch{i}{s}: i \in I, s \in (R\backslash \mathscr{p})\} [/mm] + [mm] \{\bruch{j}{s}: j \in J, s \in (R\backslash \mathscr{p})\}. [/mm]
[mm] \Rigtharrow [/mm] x ist von der Form [mm] \bruch{i}{s}+\bruch{j}{s}. [/mm] d.h man kann x schreiben als [mm] x=\bruch{i+j}{s} \in \{\bruch{i+j}{s}: i\in I, j \in J, s \in (R \backslash \mathscr{p})\}, [/mm] also gerade x [mm] \in (I+J)_{\mathscr{p}}.
[/mm]
ii) x [mm] \in (I+J)_{\mathscr{p}} \Rightarrow [/mm] x hat form [mm] \bruch{i+j}{s} [/mm] (s wie oben). [mm] \bruch{i+j}{s}=\bruch{i}{s}+\bruch{j}{s}. [/mm] Dann sind [mm] \bruch{i}{s} \in I_{\mathscr{p}} [/mm] und [mm] \bruch{j}{s} [/mm] in [mm] J_{\mathscr{p}}. [/mm] also x in [mm] I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}}.
[/mm]
Klappt das so?
Dankeschön und Lg
Loko
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:26 So 23.09.2012 | Autor: | felixf |
Moin Loko!
> R ist ein Integritätsring. Zeige, dass die Lokalisierung
> der gebrochenen R-Ideale die folgenden Eigenschaften
> erfüllt:
>
> a) [mm]I_{\mathscr{p}}[/mm] + [mm]J_{\mathscr{p}}[/mm] =
> [mm](I+J)_{\mathscr{p}}[/mm]
> b) [mm]I_{\mathscr{p}} J_{\mathscr{p}}[/mm] = [mm](IJ)_{\mathscr{p}}[/mm]
> c) [mm]I_{\mathscr{p}} \cap J_{\mathscr{p}}[/mm] = (I [mm]\cap J)_{\mathscr{p}}[/mm]
>
> Hallo!
> Zunächst nur zur a). Ich wollte lieber gleich nach dem
> ersten Aufgabenteil nachfragen ob das so funktioniert,
> bevor ich alle drei falsch mache ;)
>
> Hier also meine Idee:
> a) (i) x [mm]\in I_{\mathscr{p}}[/mm] + [mm]J_{\mathscr{p}} \Rightarrow[/mm]
> x [mm]\in (I+J)_{\mathscr{p}}[/mm]
> (ii) x [mm]\in \(I+J)_{\mathscr{p}}[/mm]
> Rightarrow x [mm]\in I_{\mathscr{p}}[/mm] + [mm]J_{\mathscr{p}}[/mm]
>
> i) x [mm]\in I_{\mathscr{p}}[/mm] + [mm]J_{\mathscr{p}}[/mm] =
> [mm]\{\bruch{i}{s}: i \in I, s \in (R\backslash \mathscr{p})\}[/mm]
> + [mm]\{\bruch{j}{s}: j \in J, s \in (R\backslash \mathscr{p})\}.[/mm]
Soweit ok. Aber nun:
> [mm]\Rigtharrow[/mm] x ist von der Form [mm]\bruch{i}{s}+\bruch{j}{s}.[/mm]
Das stimmt so nicht! Die Elemente aus der Menge [mm] $\{ 1, 2 \} [/mm] + [mm] \{ 1, 2 \}$ [/mm] sind ja auch nicht gerade $1 + 1$ und $2 + 2$!
Ein allgemeines Element aus [mm] $I_{\mathscr{p}} [/mm] + [mm] J_{\mathscr{p}}$ [/mm] ist von der Form [mm] $\frac{i}{s} [/mm] + [mm] \frac{j}{t}$ [/mm] mit $i [mm] \in [/mm] I$, $j [mm] \in [/mm] J$, $s, t [mm] \in [/mm] R [mm] \setminus \mathscr{p}$.
[/mm]
> ii) x [mm]\in (I+J)_{\mathscr{p}} \Rightarrow[/mm] x hat form
> [mm]\bruch{i+j}{s}[/mm] (s wie oben).
> [mm]\bruch{i+j}{s}=\bruch{i}{s}+\bruch{j}{s}.[/mm] Dann sind
> [mm]\bruch{i}{s} \in I_{\mathscr{p}}[/mm] und [mm]\bruch{j}{s}[/mm] in
> [mm]J_{\mathscr{p}}.[/mm] also x in [mm]I_{\mathscr{p}}[/mm] +
> [mm]J_{\mathscr{p}}.[/mm]
Das ist ok.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:01 Di 25.09.2012 | Autor: | Loko |
Super! Ja, das hatte ich übersehen :D
Vielen Dank wiedereinmal!! :)
Und lieben Gruß!
|
|
|
|