www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Lotka-Volterra Gleichung
Lotka-Volterra Gleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotka-Volterra Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 11.12.2012
Autor: Pia1

Hallo zusammen,

hasen und schafe können im lotka-volterra system verwendet werden. in diesem beispiel konkurrieren sie um das gleiche futter.

die hasen und schafe sind definiert wie folgt

h'=h(3-h-2s)  s'=s(2-r-s)

(a) finde fixpunkte so dass das system h > 0; s = 0 und h = 0; s > 0 ist
(b) zeige das h = s = 1 auch ein fixpunkt des systems ist
(c) skizziere das phasen-portrait.
(d) was passiert wenn die bevöllkerung von hasen und schafen gleich h(0) = ho (h null/ h mit kleinem null kreis am h)= 2 und s(0) = so (s null/ s mit kleinem null kreis am s) = 1?

mein lösungsgedanke:

also als erstes würde ich integrieren und die beiden seiten gleichsetzen, dennoch weiß ich zum einen nicht wie ich [mm] r^2(1,5-1/3*r-s)=r [/mm] und [mm] s^2(1-0,5r-1/3*s)=s [/mm] gleichsetzen soll, noch ob der ansatz überhaupt richtig ist

bei den aufgaben b), c) und d) habe ich leider noch weniger ahnung, aber das eine ergibt sich wohl aus dem anderen

dank euch vielmals für eure tipps!!

bussi

pia

        
Bezug
Lotka-Volterra Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 11.12.2012
Autor: MathePower

Hallo Pia1,

> Hallo zusammen,
>  
> hasen und schafe können im lotka-volterra system verwendet
> werden. in diesem beispiel konkurrieren sie um das gleiche
> futter.
>  
> die hasen und schafe sind definiert wie folgt
>  
> h'=h(3-h-2s)  s'=s(2-r-s)
>  


Das soll doch wohl [mm]s'=s*\left(2-\blue{h}-s\right)[/mm] lauten.


> (a) finde fixpunkte so dass das system h > 0; s = 0 und h =
> 0; s > 0 ist
>  (b) zeige das h = s = 1 auch ein fixpunkt des systems ist
>  (c) skizziere das phasen-portrait.
>  (d) was passiert wenn die bevöllkerung von hasen und
> schafen gleich h(0) = ho (h null/ h mit kleinem null kreis
> am h)= 2 und s(0) = so (s null/ s mit kleinem null kreis am
> s) = 1?
>  
> mein lösungsgedanke:
>  
> also als erstes würde ich integrieren und die beiden
> seiten gleichsetzen, dennoch weiß ich zum einen nicht wie
> ich [mm]r^2(1,5-1/3*r-s)=r[/mm] und [mm]s^2(1-0,5r-1/3*s)=s[/mm] gleichsetzen
> soll, noch ob der ansatz überhaupt richtig ist
>  


Setze s'=h'=0, dann hast Du folgendes Gleichungssystem zu lösen:

[mm]0=h(3-h-2s)[/mm]

[mm]0=s*\left(2-h-s\right)[/mm]

Aus der ersten Gleichung ergeben sich 2 Fälle.
Für jeden Fall ist die Lösung für die zweite Gleichung zu ermitteln.


> bei den aufgaben b), c) und d) habe ich leider noch weniger
> ahnung, aber das eine ergibt sich wohl aus dem anderen
>  
> dank euch vielmals für eure tipps!!
>  
> bussi
>
> pia


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]