www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Macht/Power Test
Macht/Power Test < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Macht/Power Test: Aufgabe
Status: (Frage) überfällig Status 
Datum: 15:17 So 15.11.2015
Autor: HugATree

Aufgabe
Seien [mm] $p_1,p_2$ [/mm] zwei verschiedene W'keitsdichten auf [mm] $(S,\mathcal{S})$ [/mm] bezüglich des [mm] $\sigma$-endlichen [/mm] Maßes [mm] $\mu$. [/mm] Es gebe keinen Test mit Macht 1 für [mm] $H_0: \theta=1$ [/mm] gegen [mm] $H_1: \theta=2$ [/mm] oder umgekehrt. Sei
[mm] $$M:=\left\{\left[\int\varphi p_1\,\mathrm{d}\mu,\int\varphi p_2\,\mathrm{d}\mu\right]'\in\mathbb{R}^2\;:\;\varphi\in\Phi\right\}$$ [/mm]
Offensichtlich ist $M$ konvex.

Zeigen Sie:
(i) Für jedes [mm] $\alpha\in(0,1)$ [/mm] gibt es [mm] $u_1,u_2$ [/mm] mit [mm] $0 (ii) Für jedes [mm] $\alpha\in(0,1)$ [/mm] ist [mm] $[\alpha,\alpha]'\in M^\circ$. [/mm]

[mm] ($\Phi:=\{\varphi:(S,\mathcal{S})\to([0,1],\mathcal{B}) \text{ messbar}\}$) [/mm]

Guten Tag zusammen,

ich habe derzeit leider ein kleines Verständnisproblem mit der obigen Aufgabe.
In der Vor. wird ja gesagt, dass es keinen Test mit Macht 1 gibt, d.h. [mm] $E_2[\varphi]=\int\varphi p_2\,\mathrm{d}\varphi\neq [/mm] 1$ für alle [mm] $\varphi\in\Phi$.\\ [/mm]
Aber es ist doch offensichtlich für [mm] $\varphi\equiv1\in\Phi$ [/mm] wegen [mm] $p_2$ [/mm] W'keitsdichte: [mm] $E_2[\varphi]=\int\varphi p_2\,\mathrm{d}\mu=\int p_2\,\mathrm{d}\mu=1$. [/mm] Deshalb weiß ich nicht genau, wie ich diese Voraussetzung verstehen soll, bzw. wo mein Denkfehler liegt.
Letztendlich würde das ja heißen, dass [mm] $[a,1],[1,a]\notin [/mm] M$ für alle [mm] $a\in\mathbb{R}$ [/mm]

Vielen Dank in Voraus,
Liebe Grüße
HugATree

        
Bezug
Macht/Power Test: *Push*
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:32 Di 17.11.2015
Autor: HugATree

*Push*

Bezug
        
Bezug
Macht/Power Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 19.11.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]