Magnetfeld im Leiter < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:04 Sa 17.12.2011 | Autor: | notinX |
Aufgabe | Gegeben ist ein zylindrischer Leiter mit Radius R, der von einem homogen verteilten Strom entlang der Zylinderachse in z-Richtung durchflossen wird.
Parallel zur Zylinderachse werde nun ein Loch mit Radius r gebohrt, dessen Mittelpunkt um den Vektor [mm] $a\vec{e}_x$ [/mm] bezüglich der Zylinderachse verschoben ist. Dieses Loch liege vollständig innerhalb des großen Zylinders.
Zeigen Sie, dass das magnetische Feld innerhalb des Hohlraums konstant ist, und zwar
[mm] $B=\mu_0\frac{j}{2}\vec{e}_y$ [/mm] |
Hallo,
ich habe erstmal das B-Feld ausgerechnet für einen Zylinder ohne Bohrung, das ist:
[mm] $\vec{B}(\vec{r})=\frac{\mu_0 Ir}{2\pi R^2}\vec{e}_{\varphi}$
[/mm]
Um jetzt das B-Feld des Zylinders mit Bohrung zu berechnen überlagere ich das Feld ohne Bohrung mit dem negativen Feld der Bohrung:
[mm] $\vec{B}(\vec{r})=\frac{\mu_0 I}{2\pi}\left(\frac{r}{R^2}-\frac{|\vec{r}-a\vec{e}_x|}{a^2}\right)\vec{e}_{\varphi}$
[/mm]
Stimmt das soweit?
Wie kann ich nun das geforderte zeigen?
Gruß,
notinX
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:46 Mo 19.12.2011 | Autor: | JonasMe |
Hi,
genau so wird es gemacht. Der letzte Schritt ist eigentlich super einfach: Das B-Feld ist ein Vektor und wir haben
[mm] $B_1 \propto I_1 [/mm] (-y, x, 0)$ sowie [mm] $B_2 \propto I_2 [/mm] (-y, x+d, 0)$, sowie [mm] $|I_1| [/mm] - [mm] |I_2| [/mm] = [mm] I_{tot}$. [/mm] Die Ströme können wir durch [mm] $I_1 [/mm] = [mm] I_{tot}R^2_2/(R_1^2-R_2^2)$ [/mm] und [mm] $I_2 [/mm] = [mm] -I_{tot}R^1_2/(R_1^2-R_2^2)$ [/mm] ausdrücken (betrachte die Querschnittsflächen). Einsetzen ... fertig.
Gruß,
Jonas
|
|
|
|