Mal wieder: Bewegungsgleichung < Physik < Naturwiss. < Vorhilfe
|
Hi,
Es geht um folgendes: zwei gleiche Massen und 3 gleiche Federn sind linear angeordnet (F M F M F), die äußeren Federn an der Wand befestigt.
Ich soll die Bewegungsgleichung für kleine Auslenkungen längs der Verbindungslinie einmal durch Einführung von Schwerpunkts- und Relativkoordinaten und andererseits durch Lösen der char. Gleichung des DGL-Systems berechnen.
Nun habe ich für die DGL erhalten: (x1 ist Auslenkung von m1 aus Ruhelage x01, ebenso x2)
m* x1(t) = -k*(2*x1(t) x2(t))
m* x2(t) = -k*(2*x2(t) x1(t))
Dann habe ich die Gleichungen jeweils einmal addiert und voneinander subtrahiert, so dass
x1+x2= -(k/m)*(x1+x2) und x1-x2= -(3k/m)*(x1-x2)
Danach neue Koord. v1=x1+x2 und v2=x1-x2 eingeführt, die entkoppelten DGLs gelöst und wieder die Ausgangsvariablen eingesetzt.
Jetzt ist das ja nicht wirklich die Lösung mit Schwerpunktskoordinaten, aber wie mach ich das mit denen. Ich denke, dass man das ganze mit der reduzierten Masse auf ein 1 Körper Problem bekommen kann, aber krieg das irgendwie nicht in die Praxis umgesetzt. Aber auch wenn ich da einen Hinweis gebrauchen könnte geht es viel dringender um Teil b:
Die char. Gleichung des DGL-Systems stellt mich wiederum vor Rätsel, denn trotz nochmaligem Nachholen der DGL-Vorlesungen sowie Durchackern der entsprechenden Skripte habe, weiß ich einfach nicht, wie ich da vorgehen soll. Also wenn jemand evtl. nen Tipp für die Lösung homogener DGL-Systeme 2. Ordnung hätte, immer her damit. ;)
Vielen Dank, steele
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:20 Di 29.11.2005 | Autor: | leduart |
Hallo Steel
Du machst aus der Dgl. 2. Ordng eine erster Ordnung:
[mm] \vec{X}= \vektor{x1 \\ x2\\v1\\v2} [/mm] mit v1=x1' , v2=x2'
[mm] \vektor{x1 \\ x2\\v1\\v2}' =\pmat{0&0&1&0\\0&0&0&1\\-2k&k&0&0\\k&-2k&0&0}* \vektor{x1 \\ x2\\v1\\v2}
[/mm]
Das solltest du mit deiner Vorarbeit können.
(Ob deine Dgl richtig sind hab ich nicht nachgeprüft. es muss für die Eigenschwingungen [mm] \omega^{2}=1.5k/m [/mm] und k/m rauskommen.
und die allg. Lösung für x1 und x2 lin. Kombinationen daraus.)
Gruss leduart
|
|
|
|