Massenpunkt auf Ellipse < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:03 So 05.12.2010 | Autor: | SWiSH |
Aufgabe | Ein Massenpunkt bewege sich entlang einer Ellipse mit der Bahngleichung:
[mm] \vec{r} [/mm] = a*cos [mm] (\omega*t)*\vec{e}_{x} [/mm] + b*sin [mm] (\omega*t)*\vec{e}_{y}
[/mm]
a) Berechnen Sie die Kraft, die auf das Teilchen wirken muss, damit es sich auf der angegebenen Bahn bewegt. Ist die Kraft konservativ?
b) Berechnen Sie das Potential mit der Bedingung [mm] V(\vec{a}) [/mm] = 0
c) Berechnen Sie die Gesamtenergie des Teilchens |
Hi,
ich denke ich bekomme bei a) F raus, aber bei der Überprüfung, ob die Kraft konservativ ist kann ich den Nabla-Operator nicht anwenden.
Aber hier erstmal mein Ansatz:
[mm] \vec{F} [/mm] = m*r''
r'' erhalte ich durch zweimaliges Ableiten von r
[mm] \vec{r}^{''} [/mm] = - [mm] a*\omega^2*cos (\omega*t)*\vec{e}_{x} [/mm] - [mm] b*\omega^2 [/mm] * sin [mm] (\omega*t) [/mm] * [mm] \vec{e}_{y}
[/mm]
Jetzt ziehe ich die Skalare in die Einheitsvektoren:
[mm] \vec{r}^{''} [/mm] = [mm] \vektor{ a*\omega^2*cos (\omega*t) \\ b*\omega^2 *sin (\omega*t)}
[/mm]
Das setze ich in [mm] \vec{F} [/mm] = m*r'' ein:
[mm] \vec{F} [/mm] = [mm] m*\omega^2\vektor{a*cos (\omega*t) \\ b *sin (\omega*t)}
[/mm]
Die Kraft ist konservativ, wenn Nabla X [mm] \vec{F} [/mm] = 0
Nabla X [mm] \vec{F} [/mm] = Nabla X [mm] m*\omega^2\vektor{a*cos (\omega*t) \\ b *sin (\omega*t) \\ 0} [/mm] =
[mm] \vektor{\bruch{\partial*F_{x}}{\partial*y} - \bruch{\partial*F_{y}}{\partial*z} \\ \bruch{\partial*F_{x}}{\partial*z} - \bruch{\partial*F_{z}}{\partial*x} \\ \bruch{\partial*F_{y}}{\partial*x} - \bruch{\partial*F_{x}}{\partial*y}}
[/mm]
Hier mein Problem: [mm] F_{y} [/mm] = - b *sin [mm] (\omega*t) [/mm] ist von t abhängig, soll aber nach z abgeleitet werden. Wie geht das?
Ich könnte [mm] F_{y} [/mm] nach t umstellen und in [mm] F_{x} [/mm] einsetzen.
t = [mm] \bruch{arcsin(-\bruch{F_{y}}{\omega^2*t})}{\omega}
[/mm]
Setze dann t ein
Nabla X [mm] m*\omega^2\vektor{a*cos (\omega*\bruch{arcsin(-\bruch{F_{y}}{\omega^2*t})}{\omega}) \\ b *sin (\omega*\bruch{arcsin(-\bruch{F_{y}}{\omega^2*t})}{\omega}) \\ 0} [/mm]
Jetzt könnte ich nach [mm] F_{y} [/mm] ableiten, aber das sieht irgendwie auch nicht ganz richtig aus.
Hoffe jemand kann mir bei meinem Denkfehler auf die Sprünge helfen.
Viele Grüße
swish
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:42 Mo 06.12.2010 | Autor: | leduart |
Hallo
a) man kann auch fesstellen ob [mm]\integral_{a}^{b}{F(s) ds} [/mm] unabhängig vom Weg ist.
oder man rechnet mit der funktionaldet. um auf Polarkoord. oder sieht in wiki sich rot in Pölar, bzw zylinderkoordinaten an.
gruss leduart
|
|
|
|