www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Matherätsel
Matherätsel < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matherätsel: Bitte um Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 20.04.2024
Autor: Mathe_yoda

Aufgabe
Ich besitze acht Würfel. Zwei davon sind rot, zwei sind weiß, zwei sind gelb und zwei sind blau. Abgesehen davon sind sie vollkommen identisch. Mein Ziel ist es, aus diesen Würfeln einen großen Würfel so zusammenzubauen, dass jede Farbe auf jeder seiner Seitenflächen zu sehen ist. Auf wie viele Arten kann dies geschehen?

Hi zusammen,
Ich habe bereits eine Lösung, doch bin ich mir unsicher, ob diese korrekt ist.

So bin ich vorgegangen:

Vorderseite: 4! Möglichkeiten die Würfel anzuordnen.
Dadurch werden aber auch jeweils 2 würfel für die linke bzw. rechte Seite festgelegt.

Es bleiben also noch 2! Möglichkeiten für die rechte
Und 2! Möglichkeiten für die linke Seite.

Dadurch ist dir Rückseite, die Ober-/ und Unterseite bereits festgelegt.

Also insgesamt: 4! +2! +2! = 28 Möglichkeiten

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Matherätsel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Sa 20.04.2024
Autor: Fulla

Hallo Mathe_yoda,

[willkommenmr]

Du betrachtest hier die verschiedenen Seiten des Würfels als "unabhängig", indem du die Kombinationen addierst. Das ist meiner Meinung nach aber nicht richtig...

Bei der Vorderseite bin ich einverstanden: hier gibt es [mm]4![/mm] verschiedene Möglichkeiten.

Jetzt betrachten wir eine der anderen Seiten: zwei farbige Würfel sind ja schon vorhanden, d.h. es gibt hier noch [mm]2![/mm] Möglichkeiten für die zwei fehlenden Würfel.

Jetzt sind wir aber schon fertig! Für die fehlenden Würfel gibt es jeweils nur noch eine Möglichkeit.

Insgesamt sind das [mm]4! * 2! = 48[/mm] Möglichkeiten, da es für jede beliebige (gültige) Kombination der ersten vier Würfel immer zwei (gültige) Kombinationen für die nächsten zwei Würfel gibt.


Wie du aber "verschieden" definierst, musst du entscheiden... Ist es z.B. eine andere Kombination, wenn du den fertigen Würfel um [mm]90^\circ[/mm] auf eine andere Seite kippst?

Lieben Gruß
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]