www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Matrix, Gauss
Matrix, Gauss < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix, Gauss: Gaussverfahren, M-1
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 01.12.2008
Autor: MissMaro

Aufgabe
Frage ist:  Gib, wenn möglich eine Matrix M-1 an, die die Population vor einem Jahr aus der ehtuigen errechnet.

$ [mm] \pmat{ 0,9 & 1,2 \\ 1,4 & 0,7 } [/mm] $

Hmm
jetzt muss ich kurz gucken wie das geht mit gauss

Frage ist:  Gib, wenn möglich eine Matrix M-1 an, die die Population vor einem Jahr aus der ehtuigen errechnet.

$ [mm] \pmat{ 0,9 & 1,2 \\ 1,4 & 0,7 } [/mm] $ * $ [mm] \pmat{ a11 & a12\\ a21 & a22} [/mm] $ = $ [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] $


$ [mm] \pmat{ 0,9a11 +1,2a21 & 1,4a11 + 0,7 a22\\ 0,9 12 + 1,2 a12& 1,4 a12+ 0,7a22 } [/mm] $

____________________________________
Das gaußsche Eliminationsverfahren oder einfach Gauß-Verfahren (nach Carl Friedrich Gauß) ist ein Algorithmus aus den mathematischen Teilgebieten der linearen Algebra und der Numerik. Es ist ein wichtiges Verfahren zum Lösen von linearen Gleichungssystemen und beruht darauf, dass elementare Umformungen zwar das Gleichungssystem ändern, aber die Lösung erhalten
Folgende Umformungen stellen bei einem linearen Gleichungssystem Äquivalenzumformungen dar (d.h. sie verändern die Lösungsmenge nicht):

1.) Das Vertauschen von zwei Gleichungen / zwei Zeilen der Matrix
2.) Addition von zwei Gleichungen / Zeilen der Matrix und Ersetzen einer Gleichung / Zeile durch die Summe
3.) Multiplikation einer Gleichung / Zeile der Matrix mit einer Zahl ungleich Null.

Oft werden die Umformungen 2 und 3 auch gleichzeitig durchgeführt, z.B. die Gleichung / Zeile (III) durch 2·(II) - 5·(III) ersetzt.

Diese Umformungen werden im Gauss-Verfahren durchgeführt, bis die sogenannte Stufenform erreicht ist.

_________________________________


Ich weiß jetzt leider nicht wie ich damit umgehen sollen
wie ich die gleichungen bilde
ich hab so was:

0,9a11 + 1,2a21 = 1
1,4a11 + 0,7a21 =0
0,9a12 + 1,2a22 = 0
1,4*a12 + 0,7a22 =1

wer kan mir helfen und die matri umwandeln

        
Bezug
Matrix, Gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 01.12.2008
Autor: snp_Drake

Schon beantwortet:

https://www.vorhilfe.de/read?t=479026

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]