www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Matrix hoch p = E
Matrix hoch p = E < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix hoch p = E: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 So 18.11.2007
Autor: hopsie

Aufgabe
Sei [mm] p\ge3 [/mm] eine Primzahl, R ein Ring mit [mm] p*1_{R}=0 [/mm] und
G= [mm] \{ \pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 } \in M_{3}(R) | a, b, c, \in R \} [/mm] .
a) Zeige: G ist eine nichtabelsche Gruppe, wobei die Multiplikation in G durch die übliche Matrixmultiplikation gegeben ist.
Hinweis: Jedes Element A [mm] \in [/mm] G hat die Form A = E + N , wobei E die Einheitsmatrix ist und für N gilt [mm] N^{3} [/mm] = 0
b) Zeige: Für alle A [mm] \in [/mm] G gilt [mm] A^{p} [/mm] = E.
Hinweis: Verwende ohne Beweis, dass p ein Teiler von [mm] \vektor{p \\ i} [/mm] ist für 1 [mm] \le [/mm] i [mm] \le [/mm] p.

Hallo!

Habe ein paar Fragen zur b).
Mein Ansatz ist, dass ich den Hinweis aus der a) verwende:
[mm] A^{p} [/mm] = (E + [mm] N)^{p} [/mm] und dann das ganze wie mit dem Binomischen Lehrsatz ausmultipliziere, d.h.  ich bekomme
[mm] A^{p} [/mm] = [mm] E^{p} [/mm] + [mm] \vektor{1 \\ p}E^{p-1}N [/mm] + [mm] \vektor{2 \\ p}E^{p-2}N^{2} [/mm] + [mm] \vektor{3 \\ p}E^{p-3}N^{3} [/mm] + [mm] \vektor{4 \\ p}E^{p-4}N^{4} [/mm] + ... + [mm] \vektor{p \\ p}N^{p}. [/mm]
Es gilt doch (wegen des Hinweises aus der a)), dass [mm] \forall [/mm] i [mm] \ge [/mm] 3 [mm] N^{i} [/mm] = 0, oder? D.h. ab dem 4. Summanden fällt alles weg. Es bleibt
[mm] E^{p} [/mm] + [mm] \vektor{1 \\ p}E^{p-1}N [/mm] + [mm] \vektor{2 \\ p}E^{p-2}N^{2} [/mm] = E + pN + [mm] \vektor{2 \\ p}N^{2}. [/mm]
Jetzt weiß ich aus der Angabe, dass [mm] p*1_{R}= [/mm] 0. Folgt daraus jetzt einfach, dass p*a= 0 [mm] \forall [/mm] a [mm] \in [/mm] R? Weil man doch schreiben kann:
p*a = [mm] p*(1_{R}*a) [/mm] = [mm] (p*1_{R})*a [/mm] = 0*a = 0.
Dann würde p*N = 0 folgen und, da [mm] \vektor{2 \\ p} [/mm] = [mm] \bruch{p(p-1)}{2} [/mm] auch [mm] \vektor{2 \\ p}N^{2} [/mm] = 0. D.h. Es gilt [mm] A^{p} [/mm] = E.

Stimmt das?


Vielen Dank im Voraus :-)

LG, hopsie

        
Bezug
Matrix hoch p = E: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 18.11.2007
Autor: andreas

hi

> Habe ein paar Fragen zur b).
>  Mein Ansatz ist, dass ich den Hinweis aus der a)
> verwende:
>  [mm]A^{p}[/mm] = (E + [mm]N)^{p}[/mm] und dann das ganze wie mit dem
> Binomischen Lehrsatz ausmultipliziere, d.h.  ich bekomme
>  [mm]A^{p}[/mm] = [mm]E^{p}[/mm] + [mm]\vektor{1 \\ p}E^{p-1}N[/mm] + [mm]\vektor{2 \\ p}E^{p-2}N^{2}[/mm]
> + [mm]\vektor{3 \\ p}E^{p-3}N^{3}[/mm] + [mm]\vektor{4 \\ p}E^{p-4}N^{4}[/mm]
> + ... + [mm]\vektor{p \\ p}N^{p}.[/mm]
>  Es gilt doch (wegen des
> Hinweises aus der a)), dass [mm]\forall[/mm] i [mm]\ge[/mm] 3 [mm]N^{i}[/mm] = 0,
> oder? D.h. ab dem 4. Summanden fällt alles weg. Es bleibt
>  [mm]E^{p}[/mm] + [mm]\vektor{1 \\ p}E^{p-1}N[/mm] + [mm]\vektor{2 \\ p}E^{p-2}N^{2}[/mm]
> = E + pN + [mm]\vektor{2 \\ p}N^{2}.[/mm]
>  Jetzt weiß ich aus der
> Angabe, dass [mm]p*1_{R}=[/mm] 0. Folgt daraus jetzt einfach, dass
> p*a= 0 [mm]\forall[/mm] a [mm]\in[/mm] R?

ja. den beweis hast du ja geliefert.


> Weil man doch schreiben kann:
>  p*a = [mm]p*(1_{R}*a)[/mm] = [mm](p*1_{R})*a[/mm] = 0*a = 0.
>  Dann würde p*N = 0 folgen und, da [mm]\vektor{2 \\ p}[/mm] =
> [mm]\bruch{p(p-1)}{2}[/mm] auch [mm]\vektor{2 \\ p}N^{2}[/mm] = 0. D.h. Es
> gilt [mm]A^{p}[/mm] = E.
>  
> Stimmt das?

bis auf, dass fast alle binomialkoeffizienten "falschrum" sind. scheint alles zu stimmen.


grüße
andreas

Bezug
                
Bezug
Matrix hoch p = E: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 So 18.11.2007
Autor: hopsie

Ah ja, stimmt, vertippt.

Vielen Dank! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]