Matrixenoperationen und LGS < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:57 Mi 22.02.2006 | Autor: | The_Akki |
Aufgabe | Gegeben sei die Matrix A = [mm] \begin{pmatrix} a-1 & a+1 & a\\a & a-1 & a+1\\a+1 & a & a-1 \end{pmatrix} mit a \in \IR [/mm]
(a) Für welches [mm]a \in \IR [/mm]ist A singulär?
(b) Sei a = 1. Bestimmen Sie [mm]A^{-1}[/mm], und lösen Sie das LGS A[mm]\vec x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}[/mm].
(c) Sei a = 0. Für welches [mm] \alpha \in \IR[/mm] besitzt das LGS A[mm]\vec x = \begin{pmatrix}\alpha \\ 1 \\ \alpha \end{pmatrix}[/mm] eine Lösung? Bestimmen Sie hierfür die Lösungsmenge |
Wie lös ich (a) am besten? Und wie kontrollier ich die Ergebnisse.
Mit Determinaten komm ich auf Potenzen 9ten Grades. Schlecht.
Mit Gauß und die Matrix mit einen Nullvektor gleichsetzen komm ich auf a=1 und a= 1/2. Wenn ich mich nicht verrechnet hab. Aber ich weiß nicht wie ich das kontrolliere. Hab mir gedacht, wie man die vektorielle Abhängigkeit überprüft. Aber das hat nicht geklappt.
Bei (c) müsste [mm]\alpha[/mm] = 0 sein. Oder?
Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
> Gegeben sei die Matrix A = [mm]\begin{pmatrix} a-1 & a+1 & a\\a & a-1 & a+1\\a+1 & a & a-1 \end{pmatrix} mit a \in \IR[/mm]
>
> (a) Für welches [mm]a \in \IR [/mm]ist A singulär?
> (b) Sei a = 1. Bestimmen Sie [mm]A^{-1}[/mm], und lösen Sie das LGS
> A[mm]\vec x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}[/mm].
> (c)
> Sei a = 0. Für welches [mm]\alpha \in \IR[/mm] besitzt das LGS A[mm]\vec x = \begin{pmatrix}\alpha \\ 1 \\ \alpha \end{pmatrix}[/mm]
> eine Lösung? Bestimmen Sie hierfür die Lösungsmenge
> Wie lös ich (a) am besten? Und wie kontrollier ich die
> Ergebnisse.
Na, am einfachsten mit der Determinante, oder nicht? Wenn diese =0 ist, ist die Matrix singulär. Das heißt, du berechnest die Determinanten in Abhängigkeit von a und berechnest dann das a, für das die Determinante =0 wird.
Überprüfen kannst du das dann natürlich auch, indem du dein errechnetes a in die Matrix einsetzt und davon dann die Determinanten berechnest.
> Mit Determinaten komm ich auf Potenzen 9ten Grades.
> Schlecht.
Was für ein 9. Grad? Für a dürfte die Determinanten eigentlich nur Grad 3 haben! Du musst doch höchstens drei a's miteinander multiplizieren, der Rest wird addiert...
> Mit Gauß und die Matrix mit einen Nullvektor gleichsetzen
> komm ich auf a=1 und a= 1/2. Wenn ich mich nicht verrechnet
> hab. Aber ich weiß nicht wie ich das kontrolliere. Hab mir
> gedacht, wie man die vektorielle Abhängigkeit überprüft.
> Aber das hat nicht geklappt.
Soll das auch alles noch zur a gehören?
> Bei (c) müsste [mm]\alpha[/mm] = 0 sein. Oder?
Wie bist du denn da drauf gekommen? Und hast du die b geschafft?
Viele Grüße
Bastiane
|
|
|
|