www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizenmultipliaktion
Matrizenmultipliaktion < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultipliaktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Do 23.02.2012
Autor: sinalco

Aufgabe
1.) zwei Matrizen A,B heißen ähnlich, wenn B = T A [mm] T^{-1} [/mm]

2.) eine Matrix A ist diagonalisierbar, wenn D = T* A T = [mm] T^{-1} [/mm] A T gilt, d.h. es existiert eine Diagonalmatrix D die ähnlich ist zu A.

(wobei mit T* die unitäre Matrix von T gemeint ist, was bedeutet dass T* = [mm] T^{-1} [/mm]

Meine Frage ist nun, wo das [mm] T^{-1} [/mm] stehen muss?! Offensichtlich ist das [mm] T^{-1} [/mm] genau einmal vor der Matrix A und einmal hinter der Matrix (in der Reihenfolge der Multiplikation).

Ich weiß, dass gilt (A * B) * C = A * (B * C) ... das heißt nur, dass es egal ist, wo ich anfange zu multiplizieren, aber nicht ob ich [mm] T^{-1} [/mm] von rechts oder von links an multipliziere. Allgemeine Kommutativität gilt bekanntlicherweiße nicht!

Vielen Dank für eure Antwort!

        
Bezug
Matrizenmultipliaktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 23.02.2012
Autor: wieschoo


> 1.) zwei Matrizen A,B heißen ähnlich, wenn B = T A [mm]T^{-1}[/mm]

Nein! Zwei Matrizen [mm]A,B\in K^{n\times n}[/mm] heißen ähnlich [mm]:\gdw[/mm] Es gibt eine invertierbare Matrix [mm]T\in K^{n\times n}[/mm] mit der Eigenschaft [mm]B=TAT^{-1}[/mm]

Aquivalent dazu ist folgende Definition

Zwei Matrizen [mm]A,B\in K^{n\times n}[/mm] heißen ähnlich [mm]:\gdw[/mm] Es gibt eine invertierbare Matrix [mm]S\in K^{n\times n}[/mm] mit der Eigenschaft [mm]B=S^{-1}AS[/mm]

Von daher ist es in diesem Sinne egal. Musst halt nur bei deiner Rechnung (beim Diagonalisieren) aufpassen.

>
> 2.) eine Matrix A ist diagonalisierbar, wenn D = T* A T =
> [mm]T^{-1}[/mm] A T gilt, d.h. es existiert eine Diagonalmatrix D
> die ähnlich ist zu A.
>
> (wobei mit T* die unitäre Matrix von T gemeint ist, was
> bedeutet dass T* = [mm]T^{-1}[/mm]
>  Meine Frage ist nun, wo das [mm]T^{-1}[/mm] stehen muss?!
> Offensichtlich ist das [mm]T^{-1}[/mm] genau einmal vor der Matrix A
> und einmal hinter der Matrix (in der Reihenfolge der
> Multiplikation).
>
> Ich weiß, dass gilt (A * B) * C = A * (B * C) ... das
> heißt nur, dass es egal ist, wo ich anfange zu
> multiplizieren, aber nicht ob ich [mm]T^{-1}[/mm] von rechts oder
> von links an multipliziere. Allgemeine Kommutativität gilt
> bekanntlicherweiße nicht!
>
> Vielen Dank für eure Antwort!  


Bezug
                
Bezug
Matrizenmultipliaktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Do 23.02.2012
Autor: sinalco

Danke!

Gilt denn allgemein?

[mm] A=S^{-1}A'S [/mm] <=> [mm] A'=SAS^{-1} [/mm]

oder wie formt man das Ganze denn um?

Bezug
                        
Bezug
Matrizenmultipliaktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Do 23.02.2012
Autor: wieschoo


> Danke!
>  
> Gilt denn allgemein?
>
> [mm]A=S^{-1}A'S[/mm] <=> [mm]A'=SAS^{-1}[/mm]

Ja für invertierbare Matrizen $S$.

>  
> oder wie formt man das Ganze denn um?  

Multipliziere doch [mm]A=S^{-1}A'S[/mm] von links mit $S$ und von rechts mit [mm] $S^{-1}$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]