www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Max/Min im Interval
Max/Min im Interval < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max/Min im Interval: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Do 20.10.2005
Autor: dr.gonzo


Folgende Aufgabe ist mir noch nicht ganz so klar:

Die Aufgabe heißt:
Finde die Maximalen und Minimalen Werte von f im geschlossenen Interval [0,9]

f(x)= [mm] 4x^1/2 [/mm] - x + 1

somit ist f'(x)= 2x^-1/2 - 1

wenn man das nun nach x auflöst erhält man x = 4 als lokales maximum

ist das nun die einzigste Lösung oder sind die Randstellen vom Interval (0 und 9) ebenfalls als Max bzw Min anzusehen???
1000Dank für die Antwort!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Max/Min im Interval: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Do 20.10.2005
Autor: angela.h.b.


>
> Folgende Aufgabe ist mir noch nicht ganz so klar:
>  
> Die Aufgabe heißt:
>  Finde die Maximalen und Minimalen Werte von f im
> geschlossenen Interval [0,9]

Hallo,
zunächst betrachtet man die Funktion im Innern des Intervalls.

>  
> f(x)= [mm]4x^1/2[/mm] - x + 1
>  
> somit ist f'(x)= 2x^-1/2 - 1
>  
> wenn man das nun nach x auflöst erhält man x = 4 als
> lokales maximum

Richtig.

>  
> ist das nun die einzigste Lösung oder sind die Randstellen
> vom Interval (0 und 9) ebenfalls als Max bzw Min
> anzusehen???

Du scheinst es schon zu ahnen: nun muß man noch die Randstellen angucken. Gibt es hier einen Wert, der größer ist, als der beim lokalen Maximum? Falls ja, hast Du dort das Maximum der Funktion f auf [0,9]. (Nix mit Ableitung! f(0) und f(9) ausrechnen und mit f(4) vergleichen.)
Es spricht einiges dafür, daß Du dort das Minimum der Funktion findest...
Rechne einfach mal die Randwerteaus und vergleich's mit Deinem Maximum.

>

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]