www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Maximale Lösung
Maximale Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximale Lösung: Tipp
Status: (Frage) überfällig Status 
Datum: 20:44 Di 11.09.2012
Autor: teo

Aufgabe
a) Bestimmen Sie zu [mm] x_0 \in \IR [/mm] alle Lösungen von

[mm] xt^2x' + t(x^2 + e^{-x^2t^2} = 0 [/mm] [mm] x(1) = x_0[/mm].

b) Zeigen Sie, dass jede Lösung aus b) maximal auf einem beschränkten Zeitintervall existiert und geben Sie das Randverhalten der Lösungen an.

Hallo,

mir geht es hier um Fragestellung b) Teil a) habe ich bereits gelöst und überprüft.

Es sind [mm]\phi(t) = \pm \frac{1}{t}\wurzel{ln(e^{x_0^2t^2} + 1 - t^2)}[/mm] Lösungen für a)

Mir ist auch das Randverhalten klar. Die Lösungen existieren auf den beschränkten Intervallen [mm] [-e^{x_0},0[ [/mm] und [mm] ]0,e^{x_0}]. [/mm]

Das "maximal auf beschränktem Intervall"  macht mir noch Probleme. Nehm ich hier den Picard Lindelöf her? Den kann ich doch aber eigentlich nur für explizite DGLen hernehmen oder? Muss ich die implizite DGL einfach umformen? Muss ich dabei irgendwas beachten?

Vielen Dank!

        
Bezug
Maximale Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 11.09.2012
Autor: MathePower

Hallo teo,

> a) Bestimmen Sie zu [mm]x_0 \in \IR[/mm] alle Lösungen von
>
> [mm]xt^2x' + t(x^2 + e^{-x^2t^2} = 0[/mm] [mm]x(1) = x_0[/mm].
>  


Die DGL lautet doch so:

[mm]xt^2x' + t(x^2 + e^{-x^2t^2}\blue{)} = 0[/mm]


> b) Zeigen Sie, dass jede Lösung aus b) maximal auf einem
> beschränkten Zeitintervall existiert und geben Sie das
> Randverhalten der Lösungen an.
>  Hallo,
>
> mir geht es hier um Fragestellung b) Teil a) habe ich
> bereits gelöst und überprüft.
>  
> Es sind [mm]\phi(t) = \pm \frac{1}{t}\wurzel{ln(e^{x_0^2t^2} + 1 - t^2)}[/mm]
> Lösungen für a)
>  


Die zugehörige Lösung:

[mm]\phi(t) = \pm \frac{1}{t}\wurzel{ln(e^{\blue{x_0^2}} + 1 - t^2)}[/mm]


> Mir ist auch das Randverhalten klar. Die Lösungen
> existieren auf den beschränkten Intervallen [mm][-e^{x_0},0[[/mm]
> und [mm]]0,e^{x_0}].[/mm]
>  


Auch die beschränkten Intervalle sind nicht richtig, denn

[mm]\wurzel{e^{x_{0}^{2}}} \not= e^{x_{0}}[/mm]


> Das "maximal auf beschränktem Intervall"  macht mir noch
> Probleme. Nehm ich hier den Picard Lindelöf her? Den kann
> ich doch aber eigentlich nur für explizite DGLen hernehmen
> oder? Muss ich die implizite DGL einfach umformen? Muss ich
> dabei irgendwas beachten?
>  


Nein, den Picard Lindelöf nimmst Du nicht.


> Vielen Dank!


Gruss
MathePower

Bezug
                
Bezug
Maximale Lösung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:59 Di 11.09.2012
Autor: teo


> Hallo teo,
>  
> > a) Bestimmen Sie zu [mm]x_0 \in \IR[/mm] alle Lösungen von
> >
> > [mm]xt^2x' + t(x^2 + e^{-x^2t^2} = 0[/mm] [mm]x(1) = x_0[/mm].
>  >  
>
>
> Die DGL lautet doch so:
>  
> [mm]xt^2x' + t(x^2 + e^{-x^2t^2}\blue{)} = 0[/mm]

Ja, Tippfehler.

> > b) Zeigen Sie, dass jede Lösung aus b) maximal auf einem
> > beschränkten Zeitintervall existiert und geben Sie das
> > Randverhalten der Lösungen an.
>  >  Hallo,
> >
> > mir geht es hier um Fragestellung b) Teil a) habe ich
> > bereits gelöst und überprüft.
>  >  
> > Es sind [mm]\phi(t) = \pm \frac{1}{t}\wurzel{ln(e^{x_0^2t^2} + 1 - t^2)}[/mm]
> > Lösungen für a)
>  >  
>
>
> Die zugehörige Lösung:
>  
> [mm]\phi(t) = \pm \frac{1}{t}\wurzel{ln(e^{\blue{x_0^2}} + 1 - t^2)}[/mm]

Ja, auch da habe ich mich vertippt.

> > Mir ist auch das Randverhalten klar. Die Lösungen
> > existieren auf den beschränkten Intervallen [mm][-e^{x_0},0[[/mm]
> > und [mm]]0,e^{x_0}].[/mm]
>  >  
>
>
> Auch die beschränkten Intervalle sind nicht richtig, denn
>  
> [mm]\wurzel{e^{x_{0}^{2}}} \not= e^{x_{0}}[/mm]
>  

ähm... nein? verdammt. Wo ist da der Denkfehler?

> > Das "maximal auf beschränktem Intervall"  macht mir noch
> > Probleme. Nehm ich hier den Picard Lindelöf her? Den kann
> > ich doch aber eigentlich nur für explizite DGLen hernehmen
> > oder? Muss ich die implizite DGL einfach umformen? Muss ich
> > dabei irgendwas beachten?
>  >  
>
>
> Nein, den Picard Lindelöf nimmst Du nicht.
>  

Und was nehm ich dann?


Grüße


Bezug
                        
Bezug
Maximale Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Di 11.09.2012
Autor: schachuzipus

Hallo teo,



> > [mm]\wurzel{e^{x_{0}^{2}}} \not= e^{x_{0}}[/mm]
>  >  
> ähm... nein? verdammt. Wo ist da der Denkfehler?

Es ist doch [mm]e^{x_0^2}\neq \left(e^{x_0}\right)^2[/mm]

Gruß

schachuzipus


Bezug
                        
Bezug
Maximale Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 So 16.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Maximale Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 19.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]