www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Maximales Existenzintervall
Maximales Existenzintervall < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Existenzintervall: Aufgabe
Status: (Frage) überfällig Status 
Datum: 22:27 Sa 17.05.2014
Autor: wilhelmine1

Aufgabe
Gegeben seinen die zwei Anfangswertprobleme

a) [mm] \left\{\begin{matrix} u'(t)=e^{-t} +u(t)^2\\ u(0)=0 \end{matrix}\right. [/mm]

b) [mm] \left\{\begin{matrix} u'(t)=e^{t} -u(t)^3\\ u(0)=0 \end{matrix}\right. [/mm]

und die zwei Eigenschaften:
1) Die Lösung hat als maximales Existenzintervall [mm] (T_{-}, T_{+}) [/mm] mit [mm] T_{+}<\infty [/mm]
2) Die Lösung hat als maximales Existenzintervall [mm] (T_{-}, T_{+}) [/mm] mit [mm] T_{+}=\infty [/mm]

Eines der Anfangswertprobleme hat Eigenschaft 1), das andere Eigenschaft 2). Entscheiden Sie, welche Eigenschaft zu welchem Problem gehört, und begründen Sie Ihre Antwort.


Hallo an alle Matheraumatiker ))

Ich habe Schwierigkeiten die oben beschriebene Aufgabe zu lösen.

Soviel ich weiß, kann man das maximale Existenzintervall bestimmen, wenn man das AWP löst. Stimmt das, oder gibt es eine andere Möglichkeit, ohne das AWP zu lösen?

Um zu entscheiden, ob [mm] T_{+}<\infty [/mm] oder [mm] T_{+}=\infty [/mm] zutrifft, muss ich erst das maximale Existenzintervall bestimmen und dann den Grenzwert der Lösungsfunktion für [mm] T_{+}\to\infty [/mm] betrachten.

Nun habe ich Probleme die AWPs zu lösen.
Das 1) AWP ist offensichtlich eine Riccati-Dgl und ich finde keine partikuläre Lösung.
Hab versucht das Problem mit der Variation der Konstanten zu lösen, aber das bringt nichts! (bei nichtlinearen Dgl ist das Verfahren sowieso nicht üblich)

Bei der 2) ist es auch keine Bernouli Dgl. und höchstwahrscheinlich ähnlich, wie die erste zu lösen.

Ich würde ungern den Potenzreihenansatz oder die Picard-Iteration hier anwenden ))))

Danke euch für die Hilfestellungen!

LG Wi


        
Bezug
Maximales Existenzintervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Sa 17.05.2014
Autor: wilhelmine1

Habe gerade gesehen, dass man den Reihenansatz bei linearen Dgl anwendet und ich habe hier nichtlineare AWPs!! ((

Bezug
        
Bezug
Maximales Existenzintervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 So 18.05.2014
Autor: wilhelmine1

Hallo

Ich würde mich auch über einen kleinen Gedanken freuen, der mich weiterbringt! Ich brauch keine Lösung, es geht hier um die Vorbereitung auf die Prüfung, und nicht um Lösen von Aufgaben-Blätter ))))

Bitte, Irgendjemand?!

LG Wi

Bezug
        
Bezug
Maximales Existenzintervall: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 21.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]