www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Maximum Likelihood Schätzer
Maximum Likelihood Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Likelihood Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 29.06.2013
Autor: johnny23

Aufgabe
Bei der Produktion von Monitoren soll die erwartete Anzahl defekter Pixel aus einer Stichprobe der Größe n mittels der Maximum-Likelihood Methode geschätzt werden. Die Monitore haben eine sehr hohe Auflösung, die Pixel fallen unabhängig voneinander aus, und die Wahrscheinlichkeit, dass ein bestimmter Pixel ausfällt ist sehr klein.
1. Modellieren Sie das Schätzproblem.
2. Bestimmen Sie den ML-Schätzer für die erwartete Anzahl defekter Pixel eines Monitores.
3. Betrachten Sie nun die Folge von Schätzern [mm] t^n [/mm] mit [mm] t^n (x_{1},..., x_{n}) [/mm] = [mm] x_{n}^2. [/mm] Schätzt diese Folge die erwartete Anzahl defekter Pixel konsistent?

Hallo!

Folgendes habe ich mir überlegt:

Sei X := die Anzahl der defekten Pixel eines Monitors.
Bei n Monitoren ist der Stichprobenraum dann X = [mm] (X_{1}, [/mm] ... [mm] ,X_{n}) [/mm] wobei jedes [mm] X_{i} [/mm] dann [mm] N(\mu,\sigma^2) [/mm] verteilt ist.
Nun soll [mm] \nu [/mm] = [mm] \mu [/mm] , der Erwartungswert, geschätzt werden.

Ergibt nach diesen Überlegungen das statistische Modell P = [mm] \{N(\mu, \sigma^2)\* ... \* N(\mu,\sigma^2) | \nu = \mu, \mu \in \IR,\sigma^2 > 0\} [/mm]

Dann erhalte ich die Likelihood-Funktion:

[mm] L_{(X_{1},...,X_{n})} (\nu) [/mm] = [mm] \bruch{1}{\wurzel{2\pi\sigma^2}}exp(-\bruch{(X_{1}-\nu)^2}{2\sigma^2})*...*\bruch{1}{\wurzel{2\pi\sigma^2}}exp(-\bruch{(X_{n}-\nu)^2}{2\sigma^2}) [/mm] = [mm] (\bruch{1}{2\pi\sigma^2})^{\bruch{n}{2}}exp(-\bruch{\summe_{i=1}^{n}(x_{i}-\nu)^2}{2\sigma^2}) [/mm]

Nach Wikipedia (ja nicht die beste Quelle) kann dann aufwendig das Maximum dieser Funktion bestimmt werden, sodass man schließlich [mm] \nu=\bruch{1}{n}\summe_{i=1}^{n}x_{i} [/mm] = [mm] \overline{x} [/mm] erhält.

Nun meine erste Frage: Ist dieses Vorgehen von der Idee her überhaupt korrekt?

Weiter scheint mir dieses Vorgehen sehr kompliziert und wahrscheinlich hätte ich ohne Recherche kein Maximum bestimmen können. Kann man das Schätzproblem vereinfachen? Immerhin wird in der Aufgabenstellung ja darauf hingewiesen, dass es sehr viele Pixel gibt und nur sehr wenige Pixel defekt sind. Allerdings ist mir keine Idee gekommen, diesen Hinweis umzusetzen.

Also weitere Fragen: Wie würdet ihr hier vorgehen? Kann man das Problem einfacher darstellen?

Viele Grüße, der Johnny

        
Bezug
Maximum Likelihood Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 So 30.06.2013
Autor: triad

Hi, sitze auch vor der Aufgabe und bekomme die Modellierung nicht wirklich hin. Was sagt mir denn, dass die [mm] X_i [/mm] normalverteilt sind?

Bezug
        
Bezug
Maximum Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 30.06.2013
Autor: luis52

Moin,

ich wuerde mit dem Modell einer Bernoulli-Verteilung arbeiten. Normalverteilung macht hier keinen Sinn.

vg Luis

Bezug
                
Bezug
Maximum Likelihood Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 So 30.06.2013
Autor: triad


> Moin,
>
> ich wuerde mit dem Modell einer Bernoulli-Verteilung
> arbeiten. Normalverteilung macht hier keinen Sinn.
>  
> vg Luis

Hi, danke für deine Antwort. Wie macht man dies am besten? Ich würde setzen
X="Anzahl defekter Pixel einer Stichprobe der Größe n" [mm] =\summe_{i=1}^{n}X_i [/mm] ~ [mm] Bin(n,\nu) [/mm] mit [mm] X_i= [/mm] "Anzahl defekter Pixel von Monitor i" [mm] \overset{u.i.v.}{\sim } Bin(1,\nu). [/mm]

So oder so ähnlich. Und der Stichprobenraum ist [mm] \mathfrak{X}=\{0,\dots ,m\}\ni (x_1,...,x_n)=X [/mm] mit m als Anzahl der Pixel eines Monitors? Hab noch Schwierigkeiten mit den Zusammenhängen der ganzen X's und wie man das richtig aufschreibt.

Bezug
                        
Bezug
Maximum Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 30.06.2013
Autor: luis52

Moin,

ich sehe das so: Jeder Monitor weist $K$ Pixel auf. Es wird eine Stichprobe von $n$ Monitoren gezogen. Jeder der $i$ Monitore weist [mm] $x_i$ [/mm] defekte Pixel auf.

Stelle nun die Likelihoodfunktion auf ...

vg Luis

Bezug
                                
Bezug
Maximum Likelihood Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 01.07.2013
Autor: yangwar1

Ich habe [mm] X_i [/mm] als Anzahl der Pixelfehler für Monitor i gesetzt und dann gilt
[mm] \summe_{i=1}^{n}X_i [/mm] = X. Da die Auflösung sehr groß ist, ein Pixelfehler aber sehr unwahrscheinlich ist, ist doch [mm] X_i [/mm] als Poissonverteilt anzunehmen.
Also gilt [mm] E(X)=E(\summe_{i=1}^{n}X_i)=\summe_{i=1}^{n}E(X_i)=n*E(X_1)=n*\gamma [/mm] , wobei [mm] \gamma [/mm] der Erwartungswert von [mm] E(X_1) [/mm] ist, also der Parameter in [mm] Poi(\gamma). [/mm]

Nun muss ein Schätzer t gefunden werden, der die ML Eigenschaft hat.
Dazu muss die Likelihood-Funktion [mm] L_x (\gamma) [/mm] aufgestellt werden. Der Stichprobenraum ist hier {0,...,N}.

Wie stellt man nun die Likelihood Funktion auf? Ich bin so vorgegangen:
[mm] L_x(\gamma)=Exp(-\gamma)*\bruch{\gamma ^x}{x!}. [/mm]

Durch Ableiten und Nullsetzen erhält man für festes x als maximalstelle von [mm] L_x: \gamma=x. [/mm]
Also E(X)=n*x.

Aber irgendwie kann das so nicht stimmen. Wo liegt denn der Fehler?

Bezug
                                        
Bezug
Maximum Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 01.07.2013
Autor: luis52

Moin, du brauchst keine Approximnation an die Poisson-Verteilung. Die Wsk, dass [mm] $x_i$ [/mm] Ausfaelle bei Monitor $i$ zu beobachten sind, ist [mm] $p^{x_i}(1-p)^{K-x_i}$. [/mm] Die Likelihoodfunktion  ist dann

[mm] $L(p)=\prod_{i=1}^np^{x_i}(1-p)^{K-x_i}$ [/mm] ...

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]