Maximum/Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei M [mm] \subset \IR^n [/mm] offen und beschränkt. Ferner sei f : M [mm] \to \IR [/mm] eine [mm] C^2 [/mm] - Funktion.
a) Zeige: Falls [mm] \Delta [/mm] f > 0, so kann f kein inneres Maximum annehmen, d.h. [mm] sup_{M} [/mm] f [mm] \le sup_{ \delta M} [/mm] f.
b) Seien [mm] a^{ij} [/mm] (x), i,j = 1,...,n und [mm] b^i [/mm] (x) [mm] C^2 [/mm] Funktionen. Zeige: Falls die Matrix A := [mm] (a^{ij}(x)) [/mm] positiv definiert ist und
[mm] \summe_{i,j=1}^{n} a^{ij} [/mm] (x) [mm] D_{ij} [/mm] f(x) + [mm] \summe_{i=1}^{n} b^i [/mm] (x) Di F(x) f(x) > 0, so kann f kein inneres Maximum annehmen, d.h. [mm] sup_M [/mm] f [mm] \le sup_{ \delta M} [/mm] f. |
huhu,
um ehrlich zu sein hab ich nicht mal ein Ansatz. Der Tip war, dass man die Spur, also die Summe der Eigenwerte betrachten soll, aber ich seh hier keine Möglichkeit, diese zu bestimmen. Hat jmd den Ansatz für mich?
Lg,
Eve
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Do 24.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
bin gerne noch an einer Antwort interessiert^^
|
|
|
|
|
Hallo eve,
> Sei M [mm]\subset \IR^n[/mm] offen und beschränkt. Ferner sei f : M
> [mm]\to \IR[/mm] eine [mm]C^2[/mm] - Funktion.
>
> a) Zeige: Falls [mm]\Delta[/mm] f > 0, so kann f kein inneres
> Maximum annehmen, d.h. [mm]sup_{M}[/mm] f [mm]\le sup_{ \delta M}[/mm] f.
Ein paar Denkanstöße.
Hinreichende Bedingung dafür, dass f ein inneres Maximum in [mm] \xi\in\IR^n [/mm] annimmt: Die Hessematrix [mm] H_f(\xi) [/mm] ist negativ semidefinit (notwendig ist natürlich das Verschwinden des Gradienten). Das bedeutet, dass alle Eigenwerte von [mm] H_f(\xi) [/mm] nicht positiv sind.
Nun bedenke, dass [mm] 0<\Delta [/mm] f= [mm] tr(H_f). [/mm] Lässt sich daraus etwas über die Definitheit von [mm] H_f [/mm] ableiten?
LG
|
|
|
|
|
> Hallo eve,
> > Sei M [mm]\subset \IR^n[/mm] offen und beschränkt. Ferner sei f
> : M
> > [mm]\to \IR[/mm] eine [mm]C^2[/mm] - Funktion.
> >
> > a) Zeige: Falls [mm]\Delta[/mm] f > 0, so kann f kein inneres
> > Maximum annehmen, d.h. [mm]sup_{M}[/mm] f [mm]\le sup_{ \delta M}[/mm] f.
> Ein paar Denkanstöße.
>
> Hinreichende Bedingung dafür, dass f ein inneres Maximum
> in [mm]\xi\in\IR^n[/mm] annimmt: Die Hessematrix [mm]H_f(\xi)[/mm] ist
> negativ semidefinit (notwendig ist natürlich das
> Verschwinden des Gradienten). Das bedeutet, dass alle
> Eigenwerte von [mm]H_f(\xi)[/mm] nicht positiv sind.
>
> Nun bedenke, dass [mm]0<\Delta[/mm] f= [mm]tr(H_f).[/mm] Lässt sich daraus
> etwas über die Definitheit von [mm]H_f[/mm] ableiten?
ich hab ja leider nix Konkretes, ich meine die Spur ist ja nix anderes als die Summe der Eigenwerte, klar. Nur die Eigenwerte sind mir nicht bekannt. Sie können ja z.b. 3 , 3, ...., 3 sein und erfüllen >0 und positive Definitheit, aber z.b. 2, -2 ,2 ,3 -2,... auf der Hauptdiagonalen würden wiederrum > 0 erfüllen aber es wäre indefinit. Aber ich denke ich kann somit immerhin die Semdefinitheiten ausschließen sowie neg. Definitheit.
Bleibt also nur noch Indefinitheit und pos. Definitheit über.
Moment! da hab ich schon die Antwort drin oder? neg. Defnitheit bzw semineg. Definitheit fallen ja raus. Deshalb kann kein Maximum angenommen werden!^^
reicht hier eine argumentative Begründung ?
|
|
|
|
|
Hallo,
> Aber ich denke ich kann somit immerhin die Semdefinitheiten
> ausschließen sowie neg. Definitheit.
>
> Bleibt also nur noch Indefinitheit und pos. Definitheit über.
>
> Moment! da hab ich schon die Antwort drin oder? neg.
> Defnitheit bzw semineg. Definitheit fallen ja raus. Deshalb
> kann kein Maximum angenommen werden!^^
So ist es.
>
> reicht hier eine argumentative Begründung ?
Es ist stets gut, mit Argumenten zu begründen .
Um zu zeigen, dass die Hessematrix in M nicht neg. semidefinit sein kann, mache einfach Widerspruchsbeweis.
Angenommen sie ist es in [mm] $\xi\in [/mm] M$, dann folgt [mm] tr(H_f(\xi))\le0, [/mm] Widerspruch zu [mm] \Delta f(\xi)>0.
[/mm]
LG
|
|
|
|