www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Maxwell (Integralform)
Maxwell (Integralform) < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maxwell (Integralform): Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 17:31 Mo 29.06.2009
Autor: tete

Aufgabe
Maxwell-Gleichungen in integraler Form

Gegeben sei die elektromagnetische Welle

[mm] \overrightarrow{E}(x,y,z,t)=A*sin(ky-wt)*\overrightarrow{e}_{z} [/mm] ,
[mm] \overrightarrow{B} [/mm]
[mm] (x,y,z,t)=\bruch{A}{c}*sin(ky-wt)*\overrightarrow{e}_{x} [/mm] ,

die sich im Vakuum mit [mm] \rho=0, \overrightarrow{j}=0 [/mm] bewegen soll. A,w,k seien
die üblichen
Konstanten.

a) Überprüfen Sie alle Maxwell-Gleichungen in integraler Form (ohne Verwendung
des Gauss´schen
und Stokes´schen Integralsatzes), d.h. führen Sie die notwendigen Integrale
explizit aus. Achten
Sie darauf, die Integrationsgebiete der Kurven- und Flächenintegrale so zu
legen, dass nicht die
rechte und die linke Seite der Maxwellgleichungen jeweils trivial Null werden.
Zu empfehlen sind
würfel- und quadratförmige Integrationsgebiete mit je einer Ecke im Ursprung.
eine andere Wahl
ist aber ebenfalls erlaubt.

b) Wie lautet der Poyntingvektor [mm] \overrightarrow{S}? [/mm]

Hallo zusammen,

ich benötige unbedingt noch ein paar Punkte in theoretischer Physik 2 und brauch nun mal bitte eure Hilfe.

zu a)

1. Maxwell-Gleichung:

[mm] \integral_{}{}{\overrightarrow{E}*d\overrightarrow{f}}=\bruch{1}{\varepsilon_{0}}*\integral_{}{}{{\rho}(\overrightarrow{r}) dV} [/mm]

Das habe ich so gelöst, dass ich auf der linken Seite [mm] \overrightarrow{E} [/mm] eingesetzt habe und [mm] d\overrightarrow{f} [/mm] durch [mm] \overrightarrow{n}*df [/mm] ersetzt habe. Dann habe ich ein [mm] \overrightarrow{e}_{z}*\overrightarrow{e}_{x} [/mm] und das ergibt Null, damit habe ich auf der rechten Seite =0 und auf der linken Seite erhalte ich auch =0 weil [mm] \rho [/mm] lt. Aufgabenstelklung =0 ist.

2. Maxwell-Gleichung:

da bitte ich um Hilfe, bis jetzt habe ich lediglich [mm] \overrightarrow{E} [/mm] und [mm] \overrightarrow{B} [/mm] ersetzt.

3. Maxwell-Gleichung:

[mm] \integral_{}{}{\overrightarrow{B}*d\overrightarrow{f}}=0 [/mm]

hier habe ich für die linke Seite ähnlich wie bei der 1. Maxwell-Gleichung gearbeitet und Null erhalten, ist also i.O.

4. Maxwell-Gleichung:

Hier würde ich mich auch über jede Hilfe freuen!

zu b)

für den Poyntingvektor erhalte ich:

[mm] \overrightarrow{S}=\bruch{1}{\mu}_{0}*\vektor{0 \\ [A*sin(ky-wt)]²*\bruch{1}{c} \\ 0} [/mm]


Es wäre also schön, wenn ihr richtige Rechnungen bestätigt, falsche berichtigt und Tipps geben könnt.

Vielen lieben Dank
tete

Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]